Korišćenje veštačkih neuronskih mreža u prediktivnoj analizi samozbijajućeg maltera ojačanog ciglenim prahom

  • zine el abidine laidani Civil Engineering Department, University of Blida1, Algeria
  • mohamed sahraoui Univerzitet Blida1, Institut za arhitekturu i urbanizam, Blida, Alžir
  • Younes Ouldkhaoua Univerzitet za nauku i tehnologiju – Houari Boumediene, Fakultet za civilno inženjerstvo, Laboratorija za gradnju u životnoj sredini
  • Benchaa Benabed Univerzitet Amar Telidji, Departman za civilno inženjerstvo, Laboratorija za istraživanje civilnog inženjerstva, Laghuat, Alžir
  • Mohamed El Ghazali Belgacem Univerzitet za nauku i tehnologiju – Houari Boumediene, Fakultet za civilno inženjerstvo, Laboratorija za gradnju u životnoj sredini, Alžir
Ključne reči: скупљање, бетон, челик, време, поједностављени приступ.

Sažetak


Увод/циљ: Samospružajući malter je specijalan malter koji ima dovoljno fluida da se konsoliduje samo težinom svog vlastitog tela, bez potrebe za mehaničkom vibracijom, što mu daje veliku vrednost u primeni u složenim građevinskim radovima i popravkama. U ovom radu biće sprovedena istraživanja o korišćenju praška od cigle kao zamene za cement u samospružajućim malterima (SCM), sa detaljnim istraživanjem efekata na obradljivost, čvrstoću na pritisak i ostale osobine.

Методе: Predloženo istraživanje modelira odnos između različitih parametara, sadržaja praška od cigle i njegove finoće sa rezultatnim osobinama maltera koristeći modele veštačkih neuronskih mreža (ANN).

Резултати: Rezultati su pokazali da dodatak praška od cigle do 10% zamene za cement poboljšava obradljivost, dajući opadanje toka (slump flow) u opsegu od 306 do 309 mm i vreme toka kroz levak između 4.8 i 5.4 s, dok je čvrstoća na pritisak bila u opsegu od 45 do 60 MPa nakon 28 dana. Međutim, pri višim nivoima zamene od 20%, opadanje toka se smanjilo na 285 mm, vreme toka kroz levak povećalo se na 9 s, a čvrstoća na pritisak opala je na 35 MPa.

Закључак: Istraživanje ilustruje prašak od cigle kao obećavajući reciklirani materijal za primenu u SCM, ne samo da bi smanjio uticaj na životnu sredinu, već i da poboljša performanse, iako optimizacija njegovog nivoa zamene treba biti pažljivo urađena kako bi se balansirali obradljivost i čvrstoća.

Reference

Abdellatief, M., Elemam, W.E., Alanazi, H. & Tahwia, A.M. 2023. Production and optimization of sustainable cement brick incorporating clay brick wastes using response surface method. Ceramics International, 49, pp.9395–9411. Available at: https://doi.org/10.1016/j.ceramint.2022.11.144

Aksu, G., Güzeller, C.O. & Eser, M.T. 2019. The effect of the normalization method used in different sample sizes on the success of artificial neural network model. International Journal of Assessment Tools in Education, 6, pp.170–192. Available at: https://doi.org/10.21449/ijate.479404

Alibrahim, B., Habib, A. & Habib, M. 2025. Developing a brain inspired multilobar neural networks architecture for rapidly and accurately estimating concrete compressive strength. Scientific Reports, 15, 1989. Available at: https://doi.org/10.1038/s41598-024-84325-z

Asteris, P.G., Apostolopoulou, M., Skentou, A.D. & Moropoulou, A. 2019. Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Computers and Concrete, 24, pp.329–345. Available at: https://doi.org/10.12989/cac.2019.24.4.329

Benhelal, E., Shamsaei, E. & Rashid, M.I. 2021. Challenges against CO₂ abatement strategies in cement industry: a review. Journal of Environmental Sciences, 104, pp.84–101. Available at: https://doi.org/10.1016/j.jes.2020.11.020

Bouleghebar, Y., Bentchikou, M., Boukendakdji, O., El-Hadj, K., Debieb, F. & Maisarah, A. 2023. The effect of brick and glass powder on the mechanical properties and porosity of self-compacting mortar. Journal of Applied Engineering Sciences, 13, pp.39–52. Available at: https://doi.org/10.2478/jaes-2023-0006

Boukhelkhal, A. & Benabed, B. 2019. Fresh and hardened properties of self-compacting repair mortar made with a new reduced carbon blended cement. Építőanyag: Journal of Silicate Based & Composite Materials, 71. Available at: https://doi.org/10.14382/epitoanyag-jsbcm.2019.19

Getahun, M.A., Shitote, S.M. & Gariy, Z.C.A. 2018. Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Construction and Building Materials, 190, pp.517–525. Available at: https://doi.org/10.1016/j.conbuildmat.2018.09.097

Ghafari, E., Ghahari, S.A., Costa, H., Júlio, E., Portugal, A. & Durães, L. 2016. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Construction and Building Materials, 127, pp.43–48. Available at: https://doi.org/10.1016/j.conbuildmat.2016.09.123

Gholamy, A., Kreinovich, V. & Kosheleva, O. 2018. Why 70/30 or 80/20 relation between training and testing sets: a pedagogical explanation. International Journal of Intelligent Technologies and Applied Statistics, 11, pp.105–111. Available at: https://doi.org/10.6148/IJITAS.201806_11(2).0003

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S. & Smith, N.J. 2020. Array programming with NumPy. Nature, 585, pp.357–362. Available at: https://doi.org/10.1038/s41586-020-2649-2

Hunter, J.D. 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering, 9, pp.90–95. Available at: https://doi.org/10.1109/MCSE.2007.55

Irki, I., Debieb, F., Ouzadid, S., Dilmi, H.L., Settari, C. & Boukhelkhel, D. 2018. Effect of Blaine fineness of recycling brick powder replacing cementitious materials in self-compacting mortar. Journal of Adhesion Science and Technology, 32, pp.963–975. Available at: https://doi.org/10.1080/01694243.2017.1393202

Ivashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. 2019. Study of low-emission multi-component cements with a high content of supplementary cementitious materials. Восточно-Европейский журнал передовых технологий, pp.39–47. (in Russian). Available at: https://doi.org/10.15587/1729-4061.2019.175472

Jithendra, C. & Elavenil, S. 2020. Influences of parameters on slump flow and compressive strength properties of aluminosilicate based flowable geopolymer concrete using Taguchi method. Silicon, 12, pp.595–602. Available at: https://doi.org/10.1007/s12633-019-00166-w

Jithendra, C. & Elavenil, S. 2021. Parametric effects on slump and compressive strength properties of geopolymer concrete using Taguchi method. International Journal of Engineering, 34(3), 629-635. Available at: https://doi.org/10.5829/ije.2021.34.03c.06

Karatas, M., Turk, K., Acikgenc, M. & Ulucan, Z. 2010. Effect of Elazig region waste brick powder on strength and viscosity properties of self-compacting mortar. Proceedings of the 9th International Congress on Advances in Civil Engineering, Trabzon, Turkey, 27–30 September [online]. Available at: https://www.academia.edu/download/71152968/Effect_of_Elazig_Region_Waste_Brick_Powd20211003-16131-1maq0qb.pdf

Khan, A.Q., Awan, H.A., Rasul, M., Siddiqi, Z.A. & Pimanmas, A. 2023. Optimized artificial neural network model for accurate prediction of compressive strength of normal and high strength concrete. Cleaner Materials, 10, 100211. Available at: https://doi.org/10.1016/j.clema.2023.100211

Khan, M.I. & Abbas, Y.M. 2023. Intelligent data-driven compressive strength prediction and optimization of reactive powder concrete using multiple ensemble-based machine learning approach. Construction and Building Materials, 404, 133148. Available at: https://doi.org/10.1016/j.conbuildmat.2023.133148

Liu, J.-C., Chen, Z., Cai, R. & Ye, H. 2022. Quantitative effects of mixture parameters on alkali-activated binder-based ultra-high strength concrete at ambient and elevated temperatures. Journal of Advanced Concrete Technology, 20, pp.1–17. Available at: https://doi.org/10.3151/jact.20.1

Mansoor, S.S., Hama, S.M. & Hamdullah, D.N. 2024. Effectiveness of replacing cement partially with waste brick powder in mortar. Journal of King Saud University – Engineering Sciences, 36, pp.524–532. Available at: https://doi.org/10.1016/j.jksues.2022.01.004

McCarthy, M.J. & Dyer, T.D. 2019. Pozzolanas and pozzolanic materials. In: Hewlett, P.C. & Liska, M. eds. Lea’s Chemistry of Cement and Concrete, 5th ed., pp.363–467. Available at: https://doi.org/10.1016/B978-0-08-100773-0.00009-5

Meng, Q., Xu, H. & He, J. 2025. Using machine learning for sustainable concrete material selection and optimization in building design. Journal of Computer Technology and Applied Mathematics, 2, pp.8–14. Available at: https://doi.org/10.70393/6a6374616d.323530

Nasr, M.S., Salman, A.J., Ghayyib, R.J., Shubbar, A., Al-Mamoori, S., Al-Khafaji, Z., Hashim, T.M., Hasan, Z.A. & Sadique, M. 2023. Effect of clay brick waste powder on the fresh and hardened properties of self-compacting concrete: state-of-the-art and life cycle assessment. Energies, 16, 4587. Available at: https://doi.org/10.3390/en16124587

Nepomuceno, M., Oliveira, L. & Lopes, S.M.R. 2012. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Construction and Building Materials, 26, pp.317–326. Available at: https://doi.org/10.1016/j.conbuildmat.2011.06.027

Pacheco-Torgal, F., Ding, Y., Miraldo, S., Abdollahnejad, Z. & Labrincha, J. 2012. Are geopolymers more suitable than Portland cement to produce high volume recycled aggregates HPC? Construction and Building Materials, 36, pp.1048–1052. Available at: https://doi.org/10.1016/j.conbuildmat.2012.07.004

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. & Dubourg, V. 2011. Scikit-learn: machine learning in Python. The Journal of Machine Learning Research, 12, pp.2825–2830. Available at: https://doi.org/10.48550/arXiv.1201.0490

Phan, N.-L., Vo, D.-H., Ngo, T.-M. & Nguyen, H.-A. 2022. Effect of waste red brick powder on fresh properties and strength development of cement paste. Proceedings of the 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB), IEEE, pp.79–82. Available at: https://doi.org/10.1109/ATiGB56486.2022.9984114

Ren, Q., Ding, L., Dai, X., Jiang, Z. & De Schutter, G. 2021. Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method. Journal of Materials in Civil Engineering, 33, 04021135. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003741

Salama, M. 2024. Optimization of regression models using machine learning: a comprehensive study with Scikit-learn. IUSRJ, 5. Available at: https://doi.org/10.59271/s45500.024.0624.16

Sathiparan, N., Jeyananthan, P. & Subramaniam, D.N. 2024. Quantifying the impact of chemical composition on pervious concrete strength: a comparative analysis using full quadratic model and artificial neural network. International Journal of Pavement Engineering, 25, 2424381. Available at: https://doi.org/10.1080/10298436.2024.2424381

Shah, M. U., Usman, M., Hanif, M. U., Naseem, I., & Farooq, S. 2021. Utilization of solid waste from brick industry and hydrated lime in self-compacting cement pastes. Materials, 14(5), 1109. Available at: https://doi.org/10.3390/ma14051109

Si-Ahmed, M. & Kenai, S. 2020. Behavior of self-compacting mortars based on waste brick powder. Current Materials Science (Formerly: Recent Patents on Materials Science), 13, pp.39–44. Available at: https://doi.org/10.2174/2666145413666200219091459

Silva, R., de Brito, J. & Dhir, R. 2016. Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Construction and Building Materials, 105, pp.400–415. Available at: https://doi.org/10.1016/j.conbuildmat.2015.12.171

Suryadi, A., Qomariah, Q. & Sarosa, M. 2016. An artificial neural networks model for compressive strength of self-compacting concrete. Applied Mechanics and Materials, 845, pp.226–230. Available at: https://doi.org/10.4028/www.scientific.net/AMM.845.226

Wang, X., Ma, Z., Wang, X., Xue, S., Shen, W., Wu, D., Zhang, X., Han, Z., Sui, S. & Wang, M. 2024. Design of self-compacting ultra-high performance concrete (SCUHPC) towards to the cementitious materials packing optimization. Cement and Concrete Composites, 148, 105443. Available at: https://doi.org/10.1016/j.cemconcomp.2024.105443

Witten, I.H. & Frank, E. 2002. Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Record, 31, pp.76–77. Available at: https://doi.org/10.1145/507338.507355

Xu, Y. & Goodacre, R. 2018. On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing, 2, pp.249–262. Available at: https://doi.org/10.1007/s41664-018-0068-2

Yaghoubi, E., Khamees, A. & Vakili, A.H. 2024. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering. Neural Computing and Applications, 36, pp.12655–12699. Available at: https://doi.org/10.1007/s00521-024-09893-7

Yan, B., Harp, D.R., Chen, B., Hoteit, H. & Pawar, R.J. 2022. A gradient-based deep neural network model for simulating multiphase flow in porous media. Journal of Computational Physics, 463, 111277. Available at: https://doi.org/10.1016/j.jcp.2022.111277

Zerbino, R., Barragán, B., Garcia, T., Agulló, L. & Gettu, R. 2009. Workability tests and rheological parameters in self-compacting concrete. Materials and Structures, 42, pp.947–960. Available at: https://doi.org/10.1617/s11527-008-9434-2

Zhang, Y., Cui, S., Yang, B., Wang, X. & Liu, T. 2025. Research on 3D printing concrete mechanical properties prediction model based on machine learning. Case Studies in Construction Materials, 22, e04254. Available at: https://doi.org/10.1016/j.cscm.2025.e04254

Zhao, Z., Grellier, A., Bouarroudj, M.E.K., Michel, F., Bulteel, D. & Courard, L. 2021. Substitution of limestone filler by waste brick powder in self-compacting mortars: properties and durability. Journal of Building Engineering, 43, 102898. Available at: https://doi.org/10.1016/j.jobe.2021.102898

Objavljeno
2025/10/14
Rubrika
Originalni naučni radovi