Korišćenje veštačkih neuronskih mreža u prediktivnoj analizi samozbijajućeg maltera ojačanog ciglenim prahom
Sažetak
Увод/циљ: Samospružajući malter je specijalan malter koji ima dovoljno fluida da se konsoliduje samo težinom svog vlastitog tela, bez potrebe za mehaničkom vibracijom, što mu daje veliku vrednost u primeni u složenim građevinskim radovima i popravkama. U ovom radu biće sprovedena istraživanja o korišćenju praška od cigle kao zamene za cement u samospružajućim malterima (SCM), sa detaljnim istraživanjem efekata na obradljivost, čvrstoću na pritisak i ostale osobine.
Методе: Predloženo istraživanje modelira odnos između različitih parametara, sadržaja praška od cigle i njegove finoće sa rezultatnim osobinama maltera koristeći modele veštačkih neuronskih mreža (ANN).
Резултати: Rezultati su pokazali da dodatak praška od cigle do 10% zamene za cement poboljšava obradljivost, dajući opadanje toka (slump flow) u opsegu od 306 do 309 mm i vreme toka kroz levak između 4.8 i 5.4 s, dok je čvrstoća na pritisak bila u opsegu od 45 do 60 MPa nakon 28 dana. Međutim, pri višim nivoima zamene od 20%, opadanje toka se smanjilo na 285 mm, vreme toka kroz levak povećalo se na 9 s, a čvrstoća na pritisak opala je na 35 MPa.
Закључак: Istraživanje ilustruje prašak od cigle kao obećavajući reciklirani materijal za primenu u SCM, ne samo da bi smanjio uticaj na životnu sredinu, već i da poboljša performanse, iako optimizacija njegovog nivoa zamene treba biti pažljivo urađena kako bi se balansirali obradljivost i čvrstoća.
Reference
Abdellatief, M., Elemam, W.E., Alanazi, H. & Tahwia, A.M. 2023. Production and optimization of sustainable cement brick incorporating clay brick wastes using response surface method. Ceramics International, 49, pp.9395–9411. Available at: https://doi.org/10.1016/j.ceramint.2022.11.144
Aksu, G., Güzeller, C.O. & Eser, M.T. 2019. The effect of the normalization method used in different sample sizes on the success of artificial neural network model. International Journal of Assessment Tools in Education, 6, pp.170–192. Available at: https://doi.org/10.21449/ijate.479404
Alibrahim, B., Habib, A. & Habib, M. 2025. Developing a brain inspired multilobar neural networks architecture for rapidly and accurately estimating concrete compressive strength. Scientific Reports, 15, 1989. Available at: https://doi.org/10.1038/s41598-024-84325-z
Asteris, P.G., Apostolopoulou, M., Skentou, A.D. & Moropoulou, A. 2019. Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Computers and Concrete, 24, pp.329–345. Available at: https://doi.org/10.12989/cac.2019.24.4.329
Benhelal, E., Shamsaei, E. & Rashid, M.I. 2021. Challenges against CO₂ abatement strategies in cement industry: a review. Journal of Environmental Sciences, 104, pp.84–101. Available at: https://doi.org/10.1016/j.jes.2020.11.020
Bouleghebar, Y., Bentchikou, M., Boukendakdji, O., El-Hadj, K., Debieb, F. & Maisarah, A. 2023. The effect of brick and glass powder on the mechanical properties and porosity of self-compacting mortar. Journal of Applied Engineering Sciences, 13, pp.39–52. Available at: https://doi.org/10.2478/jaes-2023-0006
Boukhelkhal, A. & Benabed, B. 2019. Fresh and hardened properties of self-compacting repair mortar made with a new reduced carbon blended cement. Építőanyag: Journal of Silicate Based & Composite Materials, 71. Available at: https://doi.org/10.14382/epitoanyag-jsbcm.2019.19
Getahun, M.A., Shitote, S.M. & Gariy, Z.C.A. 2018. Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Construction and Building Materials, 190, pp.517–525. Available at: https://doi.org/10.1016/j.conbuildmat.2018.09.097
Ghafari, E., Ghahari, S.A., Costa, H., Júlio, E., Portugal, A. & Durães, L. 2016. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Construction and Building Materials, 127, pp.43–48. Available at: https://doi.org/10.1016/j.conbuildmat.2016.09.123
Gholamy, A., Kreinovich, V. & Kosheleva, O. 2018. Why 70/30 or 80/20 relation between training and testing sets: a pedagogical explanation. International Journal of Intelligent Technologies and Applied Statistics, 11, pp.105–111. Available at: https://doi.org/10.6148/IJITAS.201806_11(2).0003
Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S. & Smith, N.J. 2020. Array programming with NumPy. Nature, 585, pp.357–362. Available at: https://doi.org/10.1038/s41586-020-2649-2
Hunter, J.D. 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering, 9, pp.90–95. Available at: https://doi.org/10.1109/MCSE.2007.55
Irki, I., Debieb, F., Ouzadid, S., Dilmi, H.L., Settari, C. & Boukhelkhel, D. 2018. Effect of Blaine fineness of recycling brick powder replacing cementitious materials in self-compacting mortar. Journal of Adhesion Science and Technology, 32, pp.963–975. Available at: https://doi.org/10.1080/01694243.2017.1393202
Ivashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. 2019. Study of low-emission multi-component cements with a high content of supplementary cementitious materials. Восточно-Европейский журнал передовых технологий, pp.39–47. (in Russian). Available at: https://doi.org/10.15587/1729-4061.2019.175472
Jithendra, C. & Elavenil, S. 2020. Influences of parameters on slump flow and compressive strength properties of aluminosilicate based flowable geopolymer concrete using Taguchi method. Silicon, 12, pp.595–602. Available at: https://doi.org/10.1007/s12633-019-00166-w
Jithendra, C. & Elavenil, S. 2021. Parametric effects on slump and compressive strength properties of geopolymer concrete using Taguchi method. International Journal of Engineering, 34(3), 629-635. Available at: https://doi.org/10.5829/ije.2021.34.03c.06
Karatas, M., Turk, K., Acikgenc, M. & Ulucan, Z. 2010. Effect of Elazig region waste brick powder on strength and viscosity properties of self-compacting mortar. Proceedings of the 9th International Congress on Advances in Civil Engineering, Trabzon, Turkey, 27–30 September [online]. Available at: https://www.academia.edu/download/71152968/Effect_of_Elazig_Region_Waste_Brick_Powd20211003-16131-1maq0qb.pdf
Khan, A.Q., Awan, H.A., Rasul, M., Siddiqi, Z.A. & Pimanmas, A. 2023. Optimized artificial neural network model for accurate prediction of compressive strength of normal and high strength concrete. Cleaner Materials, 10, 100211. Available at: https://doi.org/10.1016/j.clema.2023.100211
Khan, M.I. & Abbas, Y.M. 2023. Intelligent data-driven compressive strength prediction and optimization of reactive powder concrete using multiple ensemble-based machine learning approach. Construction and Building Materials, 404, 133148. Available at: https://doi.org/10.1016/j.conbuildmat.2023.133148
Liu, J.-C., Chen, Z., Cai, R. & Ye, H. 2022. Quantitative effects of mixture parameters on alkali-activated binder-based ultra-high strength concrete at ambient and elevated temperatures. Journal of Advanced Concrete Technology, 20, pp.1–17. Available at: https://doi.org/10.3151/jact.20.1
Mansoor, S.S., Hama, S.M. & Hamdullah, D.N. 2024. Effectiveness of replacing cement partially with waste brick powder in mortar. Journal of King Saud University – Engineering Sciences, 36, pp.524–532. Available at: https://doi.org/10.1016/j.jksues.2022.01.004
McCarthy, M.J. & Dyer, T.D. 2019. Pozzolanas and pozzolanic materials. In: Hewlett, P.C. & Liska, M. eds. Lea’s Chemistry of Cement and Concrete, 5th ed., pp.363–467. Available at: https://doi.org/10.1016/B978-0-08-100773-0.00009-5
Meng, Q., Xu, H. & He, J. 2025. Using machine learning for sustainable concrete material selection and optimization in building design. Journal of Computer Technology and Applied Mathematics, 2, pp.8–14. Available at: https://doi.org/10.70393/6a6374616d.323530
Nasr, M.S., Salman, A.J., Ghayyib, R.J., Shubbar, A., Al-Mamoori, S., Al-Khafaji, Z., Hashim, T.M., Hasan, Z.A. & Sadique, M. 2023. Effect of clay brick waste powder on the fresh and hardened properties of self-compacting concrete: state-of-the-art and life cycle assessment. Energies, 16, 4587. Available at: https://doi.org/10.3390/en16124587
Nepomuceno, M., Oliveira, L. & Lopes, S.M.R. 2012. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Construction and Building Materials, 26, pp.317–326. Available at: https://doi.org/10.1016/j.conbuildmat.2011.06.027
Pacheco-Torgal, F., Ding, Y., Miraldo, S., Abdollahnejad, Z. & Labrincha, J. 2012. Are geopolymers more suitable than Portland cement to produce high volume recycled aggregates HPC? Construction and Building Materials, 36, pp.1048–1052. Available at: https://doi.org/10.1016/j.conbuildmat.2012.07.004
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. & Dubourg, V. 2011. Scikit-learn: machine learning in Python. The Journal of Machine Learning Research, 12, pp.2825–2830. Available at: https://doi.org/10.48550/arXiv.1201.0490
Phan, N.-L., Vo, D.-H., Ngo, T.-M. & Nguyen, H.-A. 2022. Effect of waste red brick powder on fresh properties and strength development of cement paste. Proceedings of the 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB), IEEE, pp.79–82. Available at: https://doi.org/10.1109/ATiGB56486.2022.9984114
Ren, Q., Ding, L., Dai, X., Jiang, Z. & De Schutter, G. 2021. Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method. Journal of Materials in Civil Engineering, 33, 04021135. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003741
Salama, M. 2024. Optimization of regression models using machine learning: a comprehensive study with Scikit-learn. IUSRJ, 5. Available at: https://doi.org/10.59271/s45500.024.0624.16
Sathiparan, N., Jeyananthan, P. & Subramaniam, D.N. 2024. Quantifying the impact of chemical composition on pervious concrete strength: a comparative analysis using full quadratic model and artificial neural network. International Journal of Pavement Engineering, 25, 2424381. Available at: https://doi.org/10.1080/10298436.2024.2424381
Shah, M. U., Usman, M., Hanif, M. U., Naseem, I., & Farooq, S. 2021. Utilization of solid waste from brick industry and hydrated lime in self-compacting cement pastes. Materials, 14(5), 1109. Available at: https://doi.org/10.3390/ma14051109
Si-Ahmed, M. & Kenai, S. 2020. Behavior of self-compacting mortars based on waste brick powder. Current Materials Science (Formerly: Recent Patents on Materials Science), 13, pp.39–44. Available at: https://doi.org/10.2174/2666145413666200219091459
Silva, R., de Brito, J. & Dhir, R. 2016. Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Construction and Building Materials, 105, pp.400–415. Available at: https://doi.org/10.1016/j.conbuildmat.2015.12.171
Suryadi, A., Qomariah, Q. & Sarosa, M. 2016. An artificial neural networks model for compressive strength of self-compacting concrete. Applied Mechanics and Materials, 845, pp.226–230. Available at: https://doi.org/10.4028/www.scientific.net/AMM.845.226
Wang, X., Ma, Z., Wang, X., Xue, S., Shen, W., Wu, D., Zhang, X., Han, Z., Sui, S. & Wang, M. 2024. Design of self-compacting ultra-high performance concrete (SCUHPC) towards to the cementitious materials packing optimization. Cement and Concrete Composites, 148, 105443. Available at: https://doi.org/10.1016/j.cemconcomp.2024.105443
Witten, I.H. & Frank, E. 2002. Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Record, 31, pp.76–77. Available at: https://doi.org/10.1145/507338.507355
Xu, Y. & Goodacre, R. 2018. On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing, 2, pp.249–262. Available at: https://doi.org/10.1007/s41664-018-0068-2
Yaghoubi, E., Khamees, A. & Vakili, A.H. 2024. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering. Neural Computing and Applications, 36, pp.12655–12699. Available at: https://doi.org/10.1007/s00521-024-09893-7
Yan, B., Harp, D.R., Chen, B., Hoteit, H. & Pawar, R.J. 2022. A gradient-based deep neural network model for simulating multiphase flow in porous media. Journal of Computational Physics, 463, 111277. Available at: https://doi.org/10.1016/j.jcp.2022.111277
Zerbino, R., Barragán, B., Garcia, T., Agulló, L. & Gettu, R. 2009. Workability tests and rheological parameters in self-compacting concrete. Materials and Structures, 42, pp.947–960. Available at: https://doi.org/10.1617/s11527-008-9434-2
Zhang, Y., Cui, S., Yang, B., Wang, X. & Liu, T. 2025. Research on 3D printing concrete mechanical properties prediction model based on machine learning. Case Studies in Construction Materials, 22, e04254. Available at: https://doi.org/10.1016/j.cscm.2025.e04254
Zhao, Z., Grellier, A., Bouarroudj, M.E.K., Michel, F., Bulteel, D. & Courard, L. 2021. Substitution of limestone filler by waste brick powder in self-compacting mortars: properties and durability. Journal of Building Engineering, 43, 102898. Available at: https://doi.org/10.1016/j.jobe.2021.102898
Sva prava zadržana (c) 2025 zine el abidine laidani, mohamed sahraoui, Younes Ouldkhaoua, Benchaa Benabed, Mohamed El Ghazali Belgacem

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).
