A four-unknown higher-order shear deformation theory for the analysis of bending in sigmoid-FGM plates

  • Fatima Zohra Djidar University Mustapha Stambouli of Mascara
  • Habib Hebali University Mustapha Stambouli of Mascara
Keywords: S-FGM plates, Classical plate theory, Higher-order theory, Power-law, Bending

Abstract


An In this paper, the bending analysis of sigmoid functionally graded materials (S-FGM) plates is presented using four-variable high-order shear deformation theory. In this present theory, the number of unknown functions has simply been reduced from five to four compared to other shear deformation theories, it does not require shear correction factors and satisfies the conditions of zero shear stresses for the top and bottom surface of the plate, knowing that the variation of shear stresses is parabolic through the thickness. The equilibrium equations of this present theory are derived from the principle of virtual work, and the Navier solution is used to solve these equations. For this S-FGM plate, according to the power law, the materials are distributed in terms of volume fractions of the constituents, and their properties are gradually varied in the thickness direction. This analytical study gave very satisfactory results, and the comparison between the numerical results obtained from the present theory and those obtained from the classical plate theory (CPT) and high-order shear deformation theories (HSDTs) demonstrated the simplicity, accuracy, and reliability of this presented theory in analyzing the static bending behavior of thick S-FGM plates.

References

Abdulrazzaq, M., A., Fenjan, R., M., Ahmed, R., A., Faleh, N., M. 2020. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory. Steel Compos Struct, 35(1), pp.147-157. Available at: https://doi:10.12989/scs.2020.35.1.147

Ahmed, R., A., Fenjan, R., M., Faleh, N., M. 2019. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections. Geomechanics and Engineering, 17(2), pp.175-180. Available at: https://doi: 10.12989/gae.2019.17.2.175

Avcar, M. 2015. Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam. Struct. Eng. Mech,55(4), pp.871-884. Available at: https://doi:10.12989/sem.2015.55.4.871

Beldjelili, Y., Tounsi, A., Mahmoud, S., R. 2016. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Structures and Systems, 18(4), pp.755-786. Available at: https://doi: 10.12989/sss.2016.18.4.755

Birman, V., Keil, T., Hosder, S. 2013. Functionally graded materials in engineering. In: S Thomopoulus, V Birman and GM Genin (eds) Structural interfaces and attachments in biology. New York: Springer, pp.19–41. Available at: https://doi: 10.1007/978-1-4614-3317-0_2

Boukhari, A., Ait Atmane, H., Houari, M., S., A., Tounsi, A., AddBedia, E., A., Mahmoud, S., R. 2016. An efficient sheadeformation theory for wave propagation of functionally gradedmaterial plates. Struct. Eng. Mech, 57(5), pp.837-859. Available at: https://doi: 10.12989/sem.2016.57.5.837

Dai, H., L., Rao, Y., N., Dai, T. 2016. A review of recent researches on FGM cylindrical structures under coupled physical interactions. Compos Struct,152, pp.199–225. Available at: https://doi: 10.1016/j.compstruct.2016.05.042

Dehshahri, K., Nejad, M., Z., Ziaee, S., Niknejad, A., Hadi, A. 2020. Free vibrations analysis of arbitrary threedimensionally FGM nanoplates. Adv. Nano Res, 8(2), pp.115-134. Available at: https://doi: 10.12989/anr.2020.8.2.115

Duc, N., D., Quang, V., D., Anh, V., T., T. 2017. The nonlinear dynamic and vibration of the S-FGM shallow spherical shells resting on an elastic foundations including temperature effects. Int. J. Mech. Sci, 123,pp. 54–63. Available at: https://doi: 10.1016/j.ijmecsci.2017.01.043

Eltaher, M., A., Alshorbagy, A., E., Mahmoud, F., F. 2013. Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Composite Structures, 99, pp.193-201. Available at: https://doi: 10.1016/j.compstruct.2012.11.039

Fallah, A., Aghdam, M., M., Kargarnovin, M., H. 2013. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method. Arch. Appl. Mech, 83(2), pp.177-191. Available at: https://doi: 10.1007/s00419-012-0645-1

Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H., Omidi, M. 2010. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model, 34(5), pp.1276-1291. Available at: https://doi: 10.1016/j.apm.2009.08.008

Hosseini-Hashemi, S., Fadaee, M., Atashipour, S., R. 2011. A new exact analytical approach for free vibration of ReissnerMindlin functionally graded rectangular plates. Int. J. Mech.Sci,53(1), pp.11-22. Available at: https://doi: 10.1016/j.ijmecsci.2010.10.002

Kar, V., R., Panda, S., K. 2015. Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel. Steel Compos. Struct, Int. J., 18(3), pp.693-709. Available at: https://doi: 10.12989/scs.2015.18.3.693

Karakoti, A., Pandey, S., Kar, V., R. 2022. Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment. Thin-Walled Structures,173, 108985. Available at: https://doi: 10.1016/j.tws.2022.108985

Karami, B., Karami, S. 2019. Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials. Advances in Nano Research, 7(1), pp.51-61. Available at: https://doi: 10.12989/anr.2019.7.1.051

Kumar, A., Pandey, S. 2024. Transient analysis of size-dependent S-FGM micro-folded plates based on exact shear correction factor in the thermal environment. Arch Appl Mech, 94, pp.1335–1357. Available at: https://doi: 10.1007/s00419-024-02578-6

Kurpa, L., Shmatko, T., Awrejcewicz, J., Timchenko, G., Morachkovska, I. 2023, Analysis of Free Vibration of Porous Power-law and Sigmoid Functionally Graded Sandwich Plates by the R-functions Method. Journal of Applied and Computational Mechanics,9(4), pp.1144-1155. Available at: https://doi: 10.22055/jacm.2023.43435.4082

Mechab, I., Ait Atmane, H., Tounsi, A., Belhadj, H., A., Adda Bedia, El-A. 2010. A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mech Sin, 26, pp.941–949. Available at: https://doi: 10.1007/s10409-010-0372-1

Pandey, H., K., Agrawal, H., Panda, S., K., Hirwani, C., K., Katariya, P., V., Dewangan, H., C. 2020. Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite. Struct. Eng.Mech,73(6),pp.715-724.Available at: https://doi: 10.12989/sem.2020.73.6.715

Reddy, J., N.2000. Analysis of functionally graded plates. Int. J. Numer. Method. Eng, 47(1-3), pp.663-684. Available at: https://doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8

Reddy, J., N. 1984. A simple higher-order theory for laminated composite plates. J Appl Mech,51, pp.745–52. Available at: https://doi: 10.1115/1.3167719

Selmi, A.2020. Dynamic behavior of axially functionally graded simply supported beams. Smart Struct. Syst, 25(6), pp.669-678. Available at: https://doi: 10.12989/sss.2020.25.6.669

Singh, S., J., Harsha, S., P.2019. Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal environment. European Journal of Mechanics - A/Solids,76, pp.155-179. Available at: https://doi: 10.1016/j.euromechsol.2019.04.005

Singh, S., J., Harsha, S., P.2020.Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach. Thin-Walled Structures, 150, 106668. Available at: https://doi: 10.1016/j.tws.2020.106668

Sobhy, M. 2013. Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct, 99, pp.76-87. Available at: https://doi: 10.1016/j.compstruct.2012.11.018

Taczała, M., Buczkowski, R., Kleiber, M. 2022. Analysis of FGM plates based on physical neutral surface using general third-order plate theory. Composite Structures,301, 116218. Available at: https://doi: 10.1016/j.compstruct.2022.116218

Tao, C., Dai, T. 2021. Analyses of thermal buckling and secondary instability of post-buckled S-FGM plates with porosities based on a meshfree method. Applied Mathematical Modelling, 89, pp.268-284. Available at: https://doi: 10.1016/j.apm.2020.07.032

Thai, H., T., Choi, D., H.2012.A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Compos. Part B: Eng, 43(5), pp.2335-2347. Available at: https://doi: 10.1016/j.compositesb.2011.11.062

Thai, H., T., Kim, S., E. 2013. A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos. Struct, 99, pp.172-180. Available at: https://doi: 10.1016/j.compstruct.2012.11.030

Touratier, M. 1991. An efficient standard plate theory. Int J Eng Sci. 29(8): 901–16. Available at: https://doi:10.1016/0020-7225(91)90165-Y

Published
2025/12/17
Section
Original Scientific Papers