Teorija smicajne deformacije višeg reda sa četiri nepoznate za analizu savijanja S-FGM ploča

  • Fatima Zohra Djidar University Mustapha Stambouli of Mascara
  • Habib Hebali University Mustapha Stambouli of Mascara
Ključne reči: S-FGM ploče, klasična teorija ploča, teorija višeg reda, zakon snage, savijanje

Sažetak


Uvod/cilj: Ploče od sigmoidno funkcionalno gradijentno raspoređenih materijala (S-FGM) ispitane su na savijanje pomoću teorije smicajne deformacije višeg reda sa četiri promenljive.

Predstavljena teorija jednostavno smanjuje broj nepoznatih funkcija sa pet na četiri u odnosu na druge teorije koje se bave smicajnom deformacijom. Takođe, ne zahteva faktore korekcije smicanja i zadovoljava uslov da ne postoje smicajni naponi na gornjoj i donjoj površini ploče, budući da smicanje varira u obliku parabole kroz debljinu ploče. Jednačine ravnoteže ove teorije izvedene su iz principa virtuelnog rada i rešavaju se pomoću Navijeovog rešenja. Na osnovu zakona snage, materijali ove S-FGM ploče raspoređeni su po zapreminskim udelima konstituenata, a njihova svojstva se postepeno menjaju po dubini. Ova analitička studija dala je veoma zadovoljavajuće rezultate, a poređenje njenih numeričkih rezultata i onih dobijenih pomoću klasične teorije ploča (CPT) i teorija smicajne deformacije višeg reda (HSDTs) ukazalo je na jednostavnost, tačnost i pouzdanost ove teorije u analizi ponašanja debelih S-FGM ploča pri statičkom savijanju.

Metode: Predstavljena je teorija smicajne deformacije sa četiri promenljive kojom se određuju naponi i pomeranja u jednostavno oslonjenoj ploči od funkcionalno gradijentno raspoređenih materijala (S-FGM). Jednačine ravnoteže i graničnih uslova dobijene su iz principa virtuelnog rada. Navijeov metod je zatim primenjen u rešavanju jednačina ravnoteže. Rezultati ove nove teorije poređeni su sa rešenjima drugih teorija (CPT, HSDT).

Rezultati: Poređenje ove prerađene teorije i Redijeve teorije (HSDT) takođe je pokazalo da su deformacije i naponi ovih teorija gotovo identični, dok klasična teorija ploča potcenjuje defleksiju ovakvih ploča.

Zaključak: Izračunati različiti naponi i bezdimenzionalna pomeranja jasno pokazuju efikasnost i tačnost predstavljene teorije pri proučavanju statičkih ponašanja jednostavno oslonjenih S-FGM ploča.

Reference

Abdulrazzaq, M., A., Fenjan, R., M., Ahmed, R., A., Faleh, N., M. 2020. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory. Steel Compos Struct, 35(1), pp.147-157. Available at: https://doi:10.12989/scs.2020.35.1.147

Ahmed, R., A., Fenjan, R., M., Faleh, N., M. 2019. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections. Geomechanics and Engineering, 17(2), pp.175-180. Available at: https://doi: 10.12989/gae.2019.17.2.175

Avcar, M. 2015. Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam. Struct. Eng. Mech,55(4), pp.871-884. Available at: https://doi:10.12989/sem.2015.55.4.871

Beldjelili, Y., Tounsi, A., Mahmoud, S., R. 2016. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Structures and Systems, 18(4), pp.755-786. Available at: https://doi: 10.12989/sss.2016.18.4.755

Birman, V., Keil, T., Hosder, S. 2013. Functionally graded materials in engineering. In: S Thomopoulus, V Birman and GM Genin (eds) Structural interfaces and attachments in biology. New York: Springer, pp.19–41. Available at: https://doi: 10.1007/978-1-4614-3317-0_2

Boukhari, A., Ait Atmane, H., Houari, M., S., A., Tounsi, A., AddBedia, E., A., Mahmoud, S., R. 2016. An efficient sheadeformation theory for wave propagation of functionally gradedmaterial plates. Struct. Eng. Mech, 57(5), pp.837-859. Available at: https://doi: 10.12989/sem.2016.57.5.837

Dai, H., L., Rao, Y., N., Dai, T. 2016. A review of recent researches on FGM cylindrical structures under coupled physical interactions. Compos Struct,152, pp.199–225. Available at: https://doi: 10.1016/j.compstruct.2016.05.042

Dehshahri, K., Nejad, M., Z., Ziaee, S., Niknejad, A., Hadi, A. 2020. Free vibrations analysis of arbitrary threedimensionally FGM nanoplates. Adv. Nano Res, 8(2), pp.115-134. Available at: https://doi: 10.12989/anr.2020.8.2.115

Duc, N., D., Quang, V., D., Anh, V., T., T. 2017. The nonlinear dynamic and vibration of the S-FGM shallow spherical shells resting on an elastic foundations including temperature effects. Int. J. Mech. Sci, 123,pp. 54–63. Available at: https://doi: 10.1016/j.ijmecsci.2017.01.043

Eltaher, M., A., Alshorbagy, A., E., Mahmoud, F., F. 2013. Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Composite Structures, 99, pp.193-201. Available at: https://doi: 10.1016/j.compstruct.2012.11.039

Fallah, A., Aghdam, M., M., Kargarnovin, M., H. 2013. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method. Arch. Appl. Mech, 83(2), pp.177-191. Available at: https://doi: 10.1007/s00419-012-0645-1

Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H., Omidi, M. 2010. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model, 34(5), pp.1276-1291. Available at: https://doi: 10.1016/j.apm.2009.08.008

Hosseini-Hashemi, S., Fadaee, M., Atashipour, S., R. 2011. A new exact analytical approach for free vibration of ReissnerMindlin functionally graded rectangular plates. Int. J. Mech.Sci,53(1), pp.11-22. Available at: https://doi: 10.1016/j.ijmecsci.2010.10.002

Kar, V., R., Panda, S., K. 2015. Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel. Steel Compos. Struct, Int. J., 18(3), pp.693-709. Available at: https://doi: 10.12989/scs.2015.18.3.693

Karakoti, A., Pandey, S., Kar, V., R. 2022. Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment. Thin-Walled Structures,173, 108985. Available at: https://doi: 10.1016/j.tws.2022.108985

Karami, B., Karami, S. 2019. Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials. Advances in Nano Research, 7(1), pp.51-61. Available at: https://doi: 10.12989/anr.2019.7.1.051

Kumar, A., Pandey, S. 2024. Transient analysis of size-dependent S-FGM micro-folded plates based on exact shear correction factor in the thermal environment. Arch Appl Mech, 94, pp.1335–1357. Available at: https://doi: 10.1007/s00419-024-02578-6

Kurpa, L., Shmatko, T., Awrejcewicz, J., Timchenko, G., Morachkovska, I. 2023, Analysis of Free Vibration of Porous Power-law and Sigmoid Functionally Graded Sandwich Plates by the R-functions Method. Journal of Applied and Computational Mechanics,9(4), pp.1144-1155. Available at: https://doi: 10.22055/jacm.2023.43435.4082

Mechab, I., Ait Atmane, H., Tounsi, A., Belhadj, H., A., Adda Bedia, El-A. 2010. A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mech Sin, 26, pp.941–949. Available at: https://doi: 10.1007/s10409-010-0372-1

Pandey, H., K., Agrawal, H., Panda, S., K., Hirwani, C., K., Katariya, P., V., Dewangan, H., C. 2020. Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite. Struct. Eng.Mech,73(6),pp.715-724.Available at: https://doi: 10.12989/sem.2020.73.6.715

Reddy, J., N.2000. Analysis of functionally graded plates. Int. J. Numer. Method. Eng, 47(1-3), pp.663-684. Available at: https://doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8

Reddy, J., N. 1984. A simple higher-order theory for laminated composite plates. J Appl Mech,51, pp.745–52. Available at: https://doi: 10.1115/1.3167719

Selmi, A.2020. Dynamic behavior of axially functionally graded simply supported beams. Smart Struct. Syst, 25(6), pp.669-678. Available at: https://doi: 10.12989/sss.2020.25.6.669

Singh, S., J., Harsha, S., P.2019. Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal environment. European Journal of Mechanics - A/Solids,76, pp.155-179. Available at: https://doi: 10.1016/j.euromechsol.2019.04.005

Singh, S., J., Harsha, S., P.2020.Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach. Thin-Walled Structures, 150, 106668. Available at: https://doi: 10.1016/j.tws.2020.106668

Sobhy, M. 2013. Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct, 99, pp.76-87. Available at: https://doi: 10.1016/j.compstruct.2012.11.018

Taczała, M., Buczkowski, R., Kleiber, M. 2022. Analysis of FGM plates based on physical neutral surface using general third-order plate theory. Composite Structures,301, 116218. Available at: https://doi: 10.1016/j.compstruct.2022.116218

Tao, C., Dai, T. 2021. Analyses of thermal buckling and secondary instability of post-buckled S-FGM plates with porosities based on a meshfree method. Applied Mathematical Modelling, 89, pp.268-284. Available at: https://doi: 10.1016/j.apm.2020.07.032

Thai, H., T., Choi, D., H.2012.A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Compos. Part B: Eng, 43(5), pp.2335-2347. Available at: https://doi: 10.1016/j.compositesb.2011.11.062

Thai, H., T., Kim, S., E. 2013. A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos. Struct, 99, pp.172-180. Available at: https://doi: 10.1016/j.compstruct.2012.11.030

Touratier, M. 1991. An efficient standard plate theory. Int J Eng Sci. 29(8): 901–16. Available at: https://doi:10.1016/0020-7225(91)90165-Y

Objavljeno
2025/12/17
Rubrika
Originalni naučni radovi