Osetljivost na antibiotike i proizvodnja β-laktamaza kod Bacillus cereus izolata iz stolice pacijenata, hrane i okoline
Sažetak
Uvod/Cilj. Bacillus cereus (B. cereus) koji se u organizam čoveka unosi uglavnom putem hrane, može izazvati dva tipa oboljenja: povraćanje usled prisustva emetičkog toksina i dijarealni sindrom, usled prisustva dijarejnih toksina. Moguće su i sistemske manifestacije. Teže forme bolesti zahtevaju lečenje antibioticima. Cilj ove studije bio je da se ispitata osetljivost na antibiotike i utvrdi proizvodnja β-laktamaza kod sojeva B. cereus izolovanih iz stolice ljudi, hrane i okoline. Metode. B.cereus je identifikovan primenom selektivne podloge, klasičnog biohemijskog testa i metodom lančane reakcije polimeraze (PCR) pomoću prajmera specifičnih za bal gen. Iz svake grupe analizirana je osetljivost na antibiotike kod 30 izolata, disk-difuzionom metodom. Proizvodnja β-laktamaza rađena je Cefinaza testom i duplom disk metodom. Rezultati. Kod svih sojeva identifikovanih kao B. cereus primenom biohemijskog testa, metodom PCR umnožen je fragment od 533 bp. Izolati iz sve tri grupe bili su osetljivi na imipenem, vankomicin i eritromicin. Na ciprofloksacin su bili osetljivi svi sojevi osim jednog iz okoline. Statistički značajna razlika između grupa utvrđena je za osetljivosti na tetraciklin i trimetoprim-sulfametoksazol. 28/30 (93,33%) uzoraka iz hrane i 25/30 (83,33%) uzoraka iz okoline bili su osetljivi na tetraciklin, dok je samo 10/30 (33,33%) uzoraka stolice bilo osetljivo. Nasuprot ovim rezultatima, visoka osetljivost na trimetoprim-sulfametoksazol utvrđena je kod uzoraka iz stolice i iznosila je 100%, dok je kod izolata iz hrane i okoline bila niža i iznosila je 63,33% i 70%. Svi izolati proizvodili su β-laktamaze. Zaključak. Izolati B. cereus iz sve tri grupe pokazali su visoku osetljivost na većinu testiranih antibiotika, osim na tetraciklin iz uzoraka poreklom iz stolice i na trimetoprim/sulfametoksazol iz uzoraka hrane i okoline. Produkcija β-laktamaza potvrđena je za sve izolate.
Reference
Stenfors AL, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 2008; 32(4): 579−606.
Jääskeläinen E. Assessment and contol of Bacillus cereus emetic toxin in food [dissertation]. Finland, Helsinki: Faculty of Agri-culture and Forestry, University of Helsinki; 2008.
Jensen GB, Hansen BM, Eilenberg J, Mahillon J. The hidden life-styles of Bacillus cereus and relatives. Environ Microbiol 2003; 5(8): 631−40.
Yea CL, Lee CL, Pan TM, Horng CB. Isolation of Bacillus cereus in the feces of healthy adults in Taipei City. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 1994; 27(3): 148−51.
Ehling-Schulz M, Guinebretiere MH, Monthan A, Berge O, Fricker M, Sverisson B. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol Lett 2006; 260(2): 232−40.
Ginsburg AS, Salazar LG, True LD, Disis ML. Fatal Bacillus ce-reus sepsis following resolving neutropenic enterocolitis dur-ing the treatment of acute leukemia. Am J Hematol 2003; 72(3): 204−8.
Dancer SJ. Mopping up hospital infection. J Hosp Infect 1999; 43(2): 85−100.
Bureau of Epidemiology. Siluation of diarrhea disease. Bangok, Thailand: Department of Disease Control, Ministry of Public Health; 2004.
Schlegelova J, Brychta J, Klimova E, Napravnikova E, Babak V. The prevalence of and resistance to antimicrobial agents of Bacillus cereus isolates from foodstuffs. Vet Med Czech 2003; 48(11): 331−8.
Tewari A, Singh SP, Singh R. Prevalence of Multidrug Resistant Bacillus cereus in Foods and Human Stool Samples in and Around Pantnagar, Uttrakhand. J Advan Vet Res 2012; 2: 252−5.
Özcelik B, Citak S. Evaluation of antibiotic resistance of Bacillus cereus isolates in ice-cream samples sold in Ancara. Turk J Pharm Sci 2009; 6(3): 231−8.
Ghosh R, Sharda R, Chhabra D, Sharma V. Subclinical bacterial mastitis in cows of Malwa region of Madhya Pradesh. Indian Vet J 2003; 80(69: 499−501.
Hu X, Swiecicka I, Timmery S, Mahillon J. Sympatric soil com-munities of Bacillus cereus sensu lato : population structure and potential plasmid dynamics of pXO1- and pXO2-like ele-ments. FEMS Microbiol Ecol 2009; 70(3): 344−55.
Oladipo IC, Adejumobi OD. Incidence of Antibiotic Resistance in Some Bacterial Pathogens from Street Vended Food in Og-bomoso, Nigeria. Park J Nutr 2010; 9(11): 1061−8.
Agersø Y, Jensen LB, Givskov M, Roberts MC. The identification of a tetracycline resistance gene tet(M), on a Tn916-like trans-poson, in the Bacillus cereus group. FEMS Microbiol Lett 2002; 214(2): 251−6.
Whong CM, Kwaga JK. Antibiograms of Bacillus cereus isolates from some Nigerian Foods. Niger Food J 2007; 25(1): 178−83.
You Y, Hilpert M, Ward MJ. Identification of Tet45, a tetracyc-line efflux pump, from a poultry-litter-exposed soil isolate and persistence of tet(45) in the soil. J Antimicrob Chemother 2013; 68(9): 1962−9.
Collins CH, Lyne PM, Grange JM. Collins and Lyne's microbio-logical methods. 7th ed. London: Arnold; 2001.
Sanjoy D, Surendran PK, Thampuran N. PCR-based detection of enterotoxigenic isolates of Bacillus cereus from tropical sea-food. Indian J Med Res 2009; 129(3): 316−20.
EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological im-portance. Version 1. O. 2013. December. Växjö, Sweden: Eu-ropean Committee on Antimicrobial Susceptibility Testing; 2013.
Weber DJ, Saviteer SM, Rutala WA, Thomann CA. In vitro sus-ceptibility of Bacillus spp. to selected antimicrobial agents. An-timicrob Agents Chemother 1988; 32(5): 642−5.
Aslim B. Determination of Some Properties of Bacillus Isolated from Soil. Turk J Biol 2002; 26: 41−8.
Turnbull PC, Sirianni NM, LeBron CI, Samaan MN, Sutton FN, Reyes AE, et al. MICs of Selected Antibiotics for Bacillus anth-racis, Bacillus cereus, Bacillus thuringiensis, and Bacillus my-coides from a Range of Clinical and Environmental Sources as Determined by the Etest. J Clin Microbiol 2004; 42(8): 3626−34.
Abdel-Shakour EH, Roushdy MM. Plasmid Profile and Protease Activity of β-lactams Resistant Termotolerant Soil Isolate B. cereus BC2 from the Bacillus cereus Group Species. Rep Opin 2010; 2(8): 82−94.
Godič-Torkar K, Seme K. Antimicrobial susceptibility, β-lactamase and enterotoxin production in Bacillus cereus isolates from clinical and food samples. Folia Microbiol 2009; 54(3): 233−8.
Banerjee M, Nair GB, Ramamurthy T. Phenotypic & genetic cha-racterization of Bacillus cereus isolated from the acute diarr-hoeal patients. Indian J Med Res 2011; 133: 88−95.
Srinu B, Vijaya KA, Kumar E, Madhava R. Antimicrobial resis-tance pattern of bacterial foodborne pathogens. J Chem Pharm Res 2012; 4(7): 3734−6.
Jensen LB, Baloda S, Boye M, Aarestrup FM. Antimicrobial resis-tance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environ Int 2001; 26(7−8): 581−7.
Luna VA, King DS, Gulledge J, Cannons AC, Amuso PT, Cattani J. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre(R) automated microbroth dilution and Etest(R) agar gradient diffusion methods. J Anti-microb Chemother 2007; 60(3): 555−67.
Al-Khatib MS, Khyami-Horani H, Badran E, Shehabi AA. Inci-dence and characterization of diarrheal enterotoxins of fecal Bacillus cereus isolates associated with diarrhea. Diagn Micro-bial Infect Dis 2007; 59(4): 383−7.
Wong HC, Chang MH, Fan JY. Incidence and characterization of Bacillus cereus isolates contaminating dairy products. Appl Environ Microbiol 1988; 54(3): 699−702.
Chopra I, Roberts M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bac-terial Resistance. Microbiol Mol Biol Rev 2001; 65(2): 232−60.
