Biofungicid Bacillus subtilis Ch-13 u suzbijanju Hypomyces perniciosus (mokra trulež) u uslovima industrijske proizvodnje šampinjona
Sažetak
Cilj rada je bio da se ispita efikasnost biofungicida Bacillus subtilis Ch-13 u suzbijanju prirodne zaraze Hypomyces perniciosus (prouzrokovača bolesti mokre truleži) i njegovog uticaja na prinos u uslovima industrijske proizvodnje šampinjona (Agaricus bisporus). Biofungicid B. subtilis Ch-13 je bio primenjen u ukupnoj koncentraciji od 60 ml m-2 na dva različita načina: u tri (30 + 2 × 15 ml m-2) ili dve podeljene doze (2 × 30 ml m-2) u poređenju sa standardnom dozom primene fungicida prohloraza. Efikasnost biofungicida je bila značajno veća kada je primenjen u tri podeljene doze (28.7%), nego u dve (15.7%). Iako je uočena niska efikasnost B. subtilis Ch-13 (≈29%) u suzbijanju H. perniciosus u poređenju sa fungicidom prohlorazom (≈68%), simptomi mokre truleži su smanjeni u određenoj meri. Takođe, najveće povećanje prinosa šampinjona je postignuto kada je B. subtilis Ch-13 primenjen u tri podeljene doze (14%), umesto u dve (2%), u poređenju sa netretiranom kontrolom. Tri podeljene doze biofungicida B. subtilis Ch-13 su povećale prinos šampinjona 17%, a dve podeljene doze 4%, u poređenju sa fungicidom prohlorazom. Efikasnost biofungicida B. subtilis Ch-13 u suzbijanju prouzrokovača mokre truleži, kao i u povećanju prinosa šampinjona, bila je veća kada je primenjen u tri podeljene doze, umesto u dve. Dakle, preporučuje se primena biofungicida u tri podeljene doze (30 + 2 × 15 ml m-2, drugog dana i dve nedelje nakon pokrivanja i posle prve berbe) radi efikasnog suzbijanja H. perniciosus i povećanja proizvodnje šampinjona.
Reference
Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a
Australian Pesticides and Veterinary Medicines Authority (APVMA) (2025). Retrieved from https://portal.apvma.gov.au/es/permits
Büchner, R., Vörös, M., Allaga, H., Varga, A., Bartal, A., Szekeres, A., Varga, S., Bajzát, J., Bakos-Barczi, N., Misz, A., Csutorás, C., Hatvani, L., Vágvölgyi, C., & Kredics, L. (2022). Selection and characterization of a Bacillus strain for potential application in industrial production of white button mushroom (Agaricus bisporus). Agronomy, 12(2), 467. DOI: https://doi.org/10.3390/agronomy12020467
Carrasco, J., Navarro, M.J., & Gea, F.J. (2017). Cobweb, a serious pathology in mushroom crops: A review. Spanish Journal of Agricultural Research, 15(2), e10R01. DOI: https://doi.org/10.5424/sjar/2017152-10143
Carrasco, J., & Preston, G.M. (2020). Growing edible mushrooms: A conversation between bacteria and fungi. Environmental Microbiology, 22(3), 858-872. DOI: https://doi.org/10.1111/1462-2920.14765
Chebotar, V.K., Makarova, N.M., Shaposhnikov, A.I., & Kravchenko, L.V. (2009). Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of biopreparations. Applied Bichomistry and Microbiology, 45(4), 465-469. DOI: https://doi.org/10.1016/j.micres.2006.04.001
Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famoxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26(4), 469-475. DOI: https://doi.org/10.1016/j.cropro.2006.02.016
Clarke, J., McGuinness, B., Fitzpatrick, D., Kavanagh, K., & Grogan, H. (2024). Response of the mushroom pathogen Cladobotryum mycophilum to the fungicides prochloraz and metrafenone and two Bacillus-based biological control agents in mushroom crop trials. Crop Protection, 177, 106530. DOI: https://doi.org/10.1016/j.cropro.2023.106530
European and Mediterranean Plant Protection Organization (EPPO) (2010). Efficacy evaluation of fungicides: Fungal diseases on cultivated mushrooms of Agaricus spp. PP 1/270(1) in EPPO Standards. OEPP/EPPO Bulletin, 40(3), 270-273. DOI: https://doi.org/10.1111/j.1365-2338.2010.02384.x
Food and Drug Administration (FDA) (1999). Code of Federal Regulations, Title 21: Food and drugs. In: Chapter 1: Food and Drug Administration Department of Health and Human Services, Part 184: Direct food substances affirmed as Generally Recognized as Safe (pp. 892-896). Washington, D.C., USA: US Government Printing Office.
Gea, F.J., Navarro, M.J., & Tello, J.C. (2005). Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycological Research, 109(Pt 6), 741-745. DOI: https://doi.org/10.1017/s095375620500242x
Gea, F.J., Tello, J.C., & Navarro, M.J. (2010). Efficacy and effect on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa. Crop Protection, 29(9), 1021-1025. DOI: https://doi.org/10.1016/j.cropro.2010.06.006
Glamočlija, J., Soković, M., Ljaljević-Grbić, M., Vukojević, J., Milenković, I., & Van Griensven, L. (2008). Morphological characteristics and mycelial compatibility of different Mycogone perniciosa isolates. Journal of Microscopy, 232(3), 489-492. DOI: https://doi.org/10.1111/j.1365-2818.2008.02145.x
Grogan, H.M. (2006). Fungicide control of mushroom cobweb disease caused by Cladobotryum strains with different benzimidazole resistance profiles. Pest Management Science, 62(2), 153-161. DOI: https://doi.org/10.1002/ps.1133
Kayin, G.B., Öztüfekçi, S., Akin, H.F., Karaata, E.U., Katkat, A.V., & Turan, M.A. (2015). Effect of Bacillus subtilis Ch-13, nitrogen and phosphorus on yield, protein and gluten content of wheat (Triticum aestivum L.). Journal of Agricultural Faculty of Uludag University, 29(1), 19-28. https://dergipark.org.tr/tr/download/article-file/154225
Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163(2), 218-230. DOI: https://doi.org/10.1111/aab.12048
Liu, C., Sheng, J., Chen, L., Zhen, Y., Lee, D.Y.W., Yang, Y., Xu, M., & Shen, L. (2015). Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. Journal of Agriculture and Food Chemistry, 63(26), 6009-6018. DOI: https://doi.org/10.1021/acs.jafc.5b02218
Marčić, D., Milijašević-Marčić, S., Drobnjaković, T., Luković, J., Šantrić, Lj., Grujić, N., & Potočnik, I. (2025). Bioprotection of the button mushroom from pests and diseases. Agronomy, 15(6), 1323. DOI: https://doi.org/10.3390/agronomy15061323
Meyer, L., & Korsten, L. (2008). A nested PCR for the detection of Mycogone perniciosa causing wet bubble disease of white button mushrooms. Mushroom Science, 17(1), 554-564.
Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., & Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. DOI: https://doi.org/10.1007/s10658-016-1107-3
Navarro, M.J., Santos, M., Dianez, F., & Gea, F.J. (2023). Chemical and biological control of wet bubble disease (Hypomyces perniciosus) in mushroom crops. Agronomy, 13(7), 1672. DOI: https://doi.org/10.3390/agronomy13071672
Pandin, C., Védie, R., Rousseau, T., Le Coq, D., Aymerich, S., & Briandet, R. (2018). Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST 713 as biocontrol agent against Trichoderma aggressivum. Biological Control, 127, 39-54. DOI: https://doi.org./10.1016/j.biocontrol.2018.08.022
Potočnik, I., Vukojević, J., Stajić, M., Tanović, B., & Rekanović, E. (2010). Sensitivity of Mycogone perniciosa, pathogen of culinary-medicinal button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae), to selected fungicides and essential oils. International Journal of Medicinal Mushrooms, 12(1), 91-98. DOI: https://doi.org/10.1615/IntJMedMushr.v12.i1.90
Potočnik, I., Todorović, B., Rekanović, E., Luković, J., Paunović, D., & Milijašević-Marčić, S. (2018). Impact of Bacillus subtilis QST 713 mushroom grain spawn treatment on yield and green mould control. Pesticides and Phytomedicine, 33(3-4), 205-211. DOI: https.//doi.org./10.2298/PIF1804205P
Potočnik, I., Rekanović, E., Todorović, B., Luković, J., Paunović, D., Stanojević, O., & Milijašević-Marčić, S. (2019). The effects of casing soil treatment with Bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Pesticides and Phytomedicine, 34(1), 53-60. DOI: https://doi.org/10.2298/PIF1901053P
Potočnik, I., Todorović, B., Milijašević-Marčić, S., Luković, J., Kanižai Šarić, G., Majić, I., & Rekanović, E. (2021). A large-scale study on the effectiveness of a Bacillus subtilis Ch-13-based biofungicide against green mould disease and mushroom yield improvement. Pesticides and Phytomedicine, 36(2), 83-90. DOI: https://doi.org/10.2298/PIF2102083P
Regnier, T., & Combrinck, S. (2010). In vitro and in vivo screening of essential oils for the control of wet bubble disease of Agaricus bisporus. South African Journal of Botany, 76(4), 681-685. DOI: https://doi.org/10.1016/j.sajb.2010.07.018
Siwulski, M., Sobieralski, K., Górski, R., Lisiecka, J.M., & Sas-Golak, I. (2011). Temperature and pH impact on the mycelium growth of Mycogone perniciosa and Verticillium fungicola isolates derived from Polish and foreign mushroom growing houses. Journal of Plant Protection Research, 51(3), 268-272. DOI: https://10.2478/v10045-011-0044-6
Shi, N., Ruan, H., Jie, Y., Chen, F., & Du, Y. (2020). Sensitivity and efficacy of fungicides against wet bubble disease of Agaricus bisporus caused by Mycogone perniciosa. European Journal of Plant Pathology, 157(4), 873-885. DOI: https://doi.org/10.1007/s10658-020-02047-0
Sokal, R.R., & Rohlf, F.J. (1995). Biometry: The principles and practice of statistics in biological research (3rd edition). New York, NY, USA: W.H. Freeman and Company.
Stanojević, O., Berić, T., Potočnik, I., Rekanović, E., Stanković, S., & Milijašević-Marčić, S. (2019). Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Protection, 126(5), 104944. DOI: https://doi.org/10.1016/j.cropro.2019.104944
StatSoft Inc. (2004). STATISTICA (data analysis software system), version 7. Retrieved from https://www.statsoft.com
Umar, M.H., & Van Griensven, L.J.L.D. (1999). Studies on the morphogenesis of Agaricus bisporus: Dilema of normal versus abnormal fruit body development. Mycological Research, 103(10), 1235-1244. DOI: https://doi.org/10.1017/S0953756299008473
Védie, R., & Rousseau, T. (2008). Serenade biofungicide: une innovation mjeure dans les champignonnières françaises pour lutter contre Trichoderma aggressivum, agent de la moisissure verte du compost. La Lettre du CTC, 21, 1-2.
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).
