Botryosphaeriaceae kao patogeni jabuke – identifikacija i osetljivost na fungicide i etarska ulja in vitro

Ključne reči: jabuka, fitopatogene gljive, trulež plodova, fungicidi, etarska ulja, antifungalno delovanje

Sažetak


Proizvodnja jabuke suočava se sa značajnim ekonomskim gubicima usled smanjenog
kvaliteta plodova kao posledice prisustva velikog broja fitopatogenih gljiva, naročito
prouzrokovača truleži plodova nakon berbe kao što su gljive iz familije Botryosphaeriaceae.
Izolati korišćeni u ovom istraživanju prikupljeni su sa zaraženih plodova jabuka i na osnovu
morfoloških karakteristika i analize sekvenci dva genska regiona (EF 1-α and β-tubulin)
identifikovani kao pripadnici vrsta Diplodia seriata i Botryosphaeria dothidea. Na zdravim
plodovima jabuka sproveden je test patogenosti kojim je na osnovu merenja prečnika i
dubine truleži utvrđen značajno viši stepen agresivnosti izolata D. seriata. Veća osetljivost na
kombinaciju fluopiram + tebukonazol uočena je kod izolata D. seriata (EC50=0,00023 μg a.s./ml),
dok je piraklostrobin jače inhibitorno delovanje ispoljio na izolat B. dothidea (EC50=0,025 μg a. s./ml).
Ispitivana kombinacija fluopiram + tebukonazol pokazala je veći inhibitorni potencijal u
poređenju sa piraklostrobinom, sa inhibicijom porasta micelije od 98,44% za D. seriata i
97,56% za B. dothidea pri koncentraciji od 10 μg a.s./ml. Antifungalni efekat četiri etarska
ulja (majčine dušice, ruzmarina, lavande i limunske trave) ispitan je primenom fumigantne
makrodilucione metode. Ulje majčine dušice ispoljilo je najizraženije delovanje, potpuno
inhibirajući porast micelije izolata obe vrste pri koncentraciji 0,05 μl/ml vazdušne faze. Jako
inhibitorno delovanje pokazalo je i ulje limunske trave sa kompletnom inhibicijom porasta
micelije pri koncentraciji 0,07 μl/ml vazdušne faze (D. seriata), odnosno 0,09 μl/ml vazdušne
faze (B. dothidea). Umeren inhibitorni potencijal zabeležen je kod ulja ruzmarina, dok je ulje
lavande ispoljilo najniži antifungalni efekat. Rezultati prikazani u ovom radu ukazuju na visok
stepen osetljivosti izolata D. seriata i B. dothidea na ispitivane fungicide, ali i ulja majčine dušice
i limunske trave kao njihove ekološki prihvatljivije alternative. Dalja istraživanja su potrebna
kako bi se ispitala efikasnost ovih ulja u uslovima in vivo, kao i potencijalni uticaj na kvalitet
plodova i životnu sredinu.

Reference

Abd-Alla, M.A., Abd-El-Kader, M.M., Abd-El-Kareem, F., & El-Mohamedy, R.S.R. (2011). Evaluation of lemongrass, thyme and peracetic acid against gray mold of strawberry fruits. Journal of Agricultural Technology, 7(6), 1775-1787.

Ali, A., Wee Pheng, T., & Mustafa, M.A. (2015). Application of lemongrass oil in vapour phase for the effective control of anthracnose of ‘Sekaki’ papaya. Journal of Applied Microbiology, 118(6), 1456-1464. https://doi.org/10.1111/jam.12782

Amponsah, N.T., Jones, E., Ridgway, H.J., & Jaspers, M.V. (2012). Evaluation of fungicides for the management of Botryosphaeria dieback diseases of grapevines. Pest Management Science, 68(5), 676-683. https://doi.org/10.1002/ps.2309

Antonioli, G., Fontanella, G., Echeverrigaray, S., Delamare, A. P. L., Pauletti, G. F., & Barcellos, T. (2020). Poly (lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chemistry, 326, 126997. https://doi.org/10.1016/j.foodchem.2020.126997

Antony, S., Steel, C. C., Stodart, B. J., Billones-Baaijens, R., & Savocchia, S. (2024). Evaluation of fungicides for management of Botryosphaeriaceae associated with dieback in Australian walnut orchards. Phytopathologia Mediterranea, 63(1), 119-135. https://doi.org/10.36253/phyto-14957

Batista, E., Lopes, A., & Alves, A. (2021). What do we know about Botryosphaeriaceae? An overview of a worldwide cured dataset. Forests, 12(3), 313. https://doi.org/10.3390/f12030313

Bester, W., Crous, P. W., & Fourie, P. H. (2007). Evaluation of fungicides as potential grapevine pruning wound protectants against Botryosphaeria species. Australasian Plant Pathology, 36(1), 73-77. https://doi.org/10.1071/AP06086

Bezerra, J.D.P., Crous, P.W., Aiello, D., Gullino, M.L., Polizzi, G., & Guarnaccia, V. (2021). Genetic diversity and pathogenicity of Botryosphaeriaceae species associated with symptomatic citrus plants in Europe. Plants, 10(3), 492. https://doi.org/10.3390/plants10030492

Billones-Baaijens, R., & Savocchia, S. (2019). A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australasian Plant Pathology, 48, 3-18. http://dx.doi.org/10.1007/s13313-018-0585-5

Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553-556. https://doi.org/10.2307/3761358

Cisarova, M., Tančinova, D., Medo, J., & Kačaniova, M. (2016). The in vitro effect of selected essential oils on the growth and mycotoxin production of Aspergillus species. Journal of Environmental Science and Health, Part B, 51(10), 668-674. http://dx.doi.org/10.1080/03601234.2016.1191887

Dai, D.J., Wang, H.D., Wang, Y. P., & Zhang, C.Q. (2017). Management of Chinese hickory (Carya cathayensis) trunk canker through effective fungicide application programs and baseline sensitivity of Botryosphaeria dothidea to trif loxystrobin. Australasian Plant Pathology, 46(1), 75-82. https://doi.org/10.1007/s13313-017-0465-4

Delgado-Cerrone, L., Mondino-Hintz, P., & Alaniz-Ferro, S. (2016). Botryosphaeriaceae species associated with stem canker, die-back and fruit rot on apple in Uruguay. European Journal of Plant Pathology, 146, 637-655. https://doi.org/10.1007/s10658-016-0949-z

Di Francesco, A., Aprea, E., Gasperi, F., Parenti, A., Placi, N., Rigosi, F., & Baraldi, E. (2022). Apple pathogens: Organic essential oils as an alternative solution. Scientia Horticulturae, 300, 111075. https://doi.org/10.1016/j.scienta.2022.111075

Di Francesco, A., Cameldi, I., Neri, F., Barbanti, L., Folchi, A., Spadoni, A., & Baraldi, E. (2019). Effect of apple cultivars and storage periods on the virulence of Neofabraea spp. Plant pathology, 68(8), 1525-1532. https://doi.org/10.1111/ppa.13074

Doyle, J. J. & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.

Elshafie, H. S., Mancini, E., Camele, I., De Martino, L., & De Feo, V. (2015). In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Industrial Crops and Products, 66, 11-15. https://doi.org/10.1016/j.indcrop.2014.12.031

Fan, K., Fu, L., Liu, H., Qu, J., Zhang, G., Zhang, S., & Qiao, K. (2022). Reduced sensitivity to tebuconazole in Botryosphaeria dothidea isolates collected from major apple production areas of China. Plant Disease, 106(11), 2817-2822. https://doi.org/10.1094/PDIS-01-22-0053-RE

Fan, K., Wang, J., Fu, L., Li, X., Zhang, Y., Zhang, X. ... Qu, J. (2016). Sensitivity of Botryosphaeria dothidea from apple to tebuconazole in China. Crop Protection, 87, 1-5. https://doi.org/10.1016/j.cropro.2016.04.018

Fan, K., Wang, J., Fu, L., Zhang, G. F., Wu, H. B., Feng, C., & Qu, J. L. (2019). Baseline sensitivity and control efficacy of pyraclostrobin against Botryosphaeria dothidea isolates in China. Plant disease, 103(7), 1458-1463. https://doi.org/10.1094/PDIS-07-18-1214-RE

FAOSTAT (2023). Retrived from https://www.fao.org/faostat/en/#data/QCL

FRAC (2024). FRAC Code List 2024. Fungal control agents sorted by cross-resistance pattern and mode of action (including coding for FRAC Groups on product labels). https://www.frac.info/media/kufnaceb/frac-codelist-2024.pdf

Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

Grahovac, M., Hrustić, J., Tanović, B., Inđić, D., Vuković, S., Mihajlović, M., & Gvozdenac, S. (2011). In vitro effects of essential oils on Colletotrichum spp. Agriculture & Forestry, 57(4), 7-15.

Konstantinou, S., Karaoglanidis, G.S., Bardas, G.A., Minas, I.S., Doukas, E., & Markoglou, A.N. (2011). Postharvest fruit rots of apple in Greece: Pathogen incidence and relationships between fruit quality parameters, cultivar susceptibility, and patulin production. Plant Disease, 95(6), 666-672. https://doi.org/10.1094/PDIS-11-10-0856

Kontaxakis, E., Filippidi, E., Stavropoulou, A., Daferera, D., Tarantilis, P. A., & Lydakis, D. (2020). Evaluation of eight essential oils for postharvest control of Aspergillus carbonarius in grapes. Journal of Food Protection, 83(9), 1632-1640. https://doi.org/10.4315/JFP-19-582

Lopez-Reyes, J.G., Spadaro, D., Gullino, M.L., & Garibaldi, A. (2010). Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour and Fragrance Journal, 25(3), 171-177. https://doi.org/10.1002/ffj.1989

Lopez-Reyes, J.G., Spadaro, D., Prelle, A., Garibaldi, A., & Gullino, M.L. (2013). Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vivo. Journal of Food Protection, 76(4), 631-639. https://doi.org/10.4315/0362-028X.JFP-12-342

Martino, I., Agusti-Brisach, C., Nari, L., Gullino, M.L., & Guarnaccia, V. (2024). Characterization and pathogenicity of fungal species associated with dieback of apple trees in Northern Italy. Plant Disease, 108(2), 311-331. https://doi.org/10.1094/PDIS-04-23-0645-RE

Merah, O., Sayed-Ahmad, B., Talou, T., Saad, Z., Cerny, M., Grivot, S., ... & Hijazi, A. (2020). Biochemical composition of cumin seeds, and biorefining study. Biomolecules, 10(7), 1054. https://doi.org/10.3390/biom10071054

Olmo, D., Gramaje, D., & Armengol, J. (2017). Evaluation of fungicides to protect pruning wounds from Botryosphaeriaceae species infections on almond trees. Phytopathologia Mediterranea, 56(1), 77-86. https://doi.org/10.14601/Phytopathol_Mediterr-19428

Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z., & Crous, P. W. (2013). The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology, 76(1), 51-167. https://doi.org/10.3114/sim0021

Pitt, W.M., Sosnowski, M.R., Huang, R., Qiu, Y., Steel, C.C., & Savocchia, S. (2012). Evaluation of fungicides for the management of Botryosphaeria canker of grapevines. Plant Disease, 96(9), 1303-1308. https://doi.org/10.1094/PDIS-11-11-0998-RE

Romanazzi, G. & Droby, S. (2016). Control strategies for postharvest grey mould on fruit crops. In: S. Fillinger & Y. Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp 217-228). Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_11

Sarkhosh, A., Schaffer, B., Vargas, A.I., Palmateer, A. J., Lopez, P., & Soleymani, A. (2018). In vitro evaluation of eight plant essential oils for controlling Colletotrichum, Botryosphaeria, Fusarium and Phytophthora fruit rots of avocado, mango and papaya. Plant Protection Science, 54(3), 153-162. https://doi.org/10.17221/49/2017-PPS

Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A., & Merah, O. (2017). The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial crops and products, 109, 661-671. https://doi.org/10.1016/j.indcrop.2017.09.027

Servili, A., Feliziani, E., & Romanazzi, G. (2017). Exposure to volatiles of essential oils alone or under hypobaric treatment to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 133, 36-40. https://doi.org/10.1016/j.postharvbio.2017.06.007

Sivakumar, D., & Bautista-Banos, S. (2014). A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27-37. https://doi.org/10.1016/j.cropro.2014.05.012

Slippers, B., Boissin, E., Phillips, A.J.L., Groenewald, J.Z., Lombard, L., Wingfield, M.J., ... & Crous, P.W. (2013). Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Studies in Mycology, 76(1), 31-49. https://doi.org/10.3114/sim002010

Song, Y., Li, L., Li, C., Lu, Z., Men, X., & Chen, F. (2018). Evaluating the sensitivity and efficacy of fungicides with different modes of action against Botryosphaeria dothidea. Plant Disease, 102(9), 1785-1793. https://doi.org/10.1094/PDIS-01-18-0118-RE

Soppelsa, S., Van Hemelrijck, W., Bylemans, D., & Andreotti, C. (2023). Essential oils and chitosan applications to protect apples against postharvest diseases and to extend shelf life. Agronomy, 13(3), 822. https://doi.org/10.3390/agronomy13030822

Staden, R., Beal, K. F., & Bonfield, J. K. (2000). The Staden Package, 1998. In: S. Misener & S. A. Krawetz (Eds.), Bioinformatics Methods and Protocols (pp 115-130). (Methods in Molecular Biology, 132). Totowa, NJ: Humana Press. https://doi.org/10.1385/1-59259-192-2:115

Statistical Office of the Republic of Serbia (2024). Statistical Yearbook оf the Republic of Serbia. https://publikacije.stat.gov.rs/G2024/PdfE/G20242057.pdf

Stojanović, S., Živković, S., Gavrilović, V., Starović, M., Aleksić, G., & Pavlović, S. (2003). Botryosphaeria obtusa causer of apple fruit rot in Serbia. Zaštita bilja, 54(1-4), 19-31.

Tang, W., Ding, Z., Zhou, Z. Q., Wang, Y. Z., & Guo, L. Y. (2012). Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Disease, 96(4), 486-496. https://doi.org/10.1094/PDIS-08-11-0635

Team of Editors (2024). Pesticidi u poljoprivredi i šumarstvu u Srbiji (Pesticides in agriculture and forestry in Serbia) (21st updated ed.). Belgrade, Serbia: Plant Protection Society of Serbia.

Thomidis, T., & Prodromou, I. (2020). Evaluation of fungicides for the control of postharvest fruit rot pathogens of apple in Northern Greece. Archives of Phytopathology and Plant Protection, 53(11-12), 581-590. https://doi.org/10.1080/03235408.2020.1770980

Torres, C., Latorre, B. A, Undurraga, P., & Besoain, X. (2013). Evaluation of DMI fungicides against species of Diplodia and Neofusicoccum associated with Botryosphaeria canker of grapevine. Ciencia e Investigación Agraria, 40(1), 131-138.

Vasić, M., Duduk, N., Vico, I., & Ivanović, M. S. (2013). First report of Botryosphaeria dothidea causing white rot of apple fruit in Serbia. Plant Disease, 97(12), 1659-1659. https://doi.org/10.1094/PDIS-05-13-0493-PDN

Verdeguer, M., Sanchez-Moreiras, A. M., & Araniti, F. (2020). Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants, 9(11), 1571. https://doi.org/10.3390/plants9111571

Vučković, N., Vico, I., Duduk, B., & Duduk, N. (2022). Diversity of Botryosphaeriaceae and Diaporthe species associated with postharvest apple fruit decay in Serbia. Phytopathology, 112(4), 929-943. https://doi.org/10.1094/PHYTO-07-21-0304-R

Wang, D., Wang, G., Wang J., Zhai, H., & Xue, X. (2023). Inhibitory effect and underlying mechanism of cinnamon and clove essential oils on Botryosphaeria dothidea and Colletotrichum gloeosporioides causing rots in postharvest bagging-free apple fruits. Frontiers in Microbiology, 14, 1109028. http://dx.doi.org/10.3389/fmicb.2023.1109028

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In A. M. Innis, G. F. Gelfard, J. J. Snindky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp 315-322). San Diego, CA, USA: Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yuan, C.W., Jiang, X.Y., Yin, W.Y., Lu, Y., Li, X.D., & Zhang, J.W. (2015). Effects of pyraclostrobin on soil microbial respiration and enzymatic activities. Journal of Agro-Environment Science, 34(5), 897-903.

Zhou, Y., Gong, G., Cui, Y., Zhang, D., Chang, X., Hu, R., ... Sun, X. (2015). Identification of Botryosphaeriaceae species causing kiwifruit rot in Sichuan Province, China. Plant Disease, 99(5), 699-708. https://doi.org/10.1094/PDIS-07-14-0727-RE

Objavljeno
2025/05/09
Kako citirati
Milošević, M., Stepanović, J., Rekanović, E., & Stepanović, M. (2025). Botryosphaeriaceae kao patogeni jabuke – identifikacija i osetljivost na fungicide i etarska ulja in vitro. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 40(1), 1-11. https://doi.org/10.2298/PIF2501001M
Rubrika
Originalni naučni članak