Formulacija i karakterizacija vaginalnih kapsula i tableta sa brzim oslobađanjem živih sojeva Lactobacillus spp.

  • Aleksandar Aleksovski Bacthera AG, Bazel, Švajcarska
  • Haniehsadat Hosseini Bacthera AG; Institute of Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Mutenc, Švajcarska
  • Hajar Alkhafaji Bacthera A/S, Hersholm, Danska
  • Michaëla Leite Bacthera AG, Bazel, Švajcarska
  • Ander Sagasta Bacthera AG, Bazel, Švajcarska
  • Viviane Leopold Bacthera AG, Bazel, Švajcarska
Ključne reči: vaginalna primena lekova, živi bioterapijski proizvodi, trenutno oslobađanje, kapsule, tablete

Sažetak


Živi bioterapijski proizvodi (LBP) stiču sve veći medicinski značaj kao novi pristup u prevenciji i lečenju različitih stanja u ženskoj populaciji. U ovoj studiji razmatrana je formulacija i karakterizacija vaginalnih farmaceutskih oblika sa trenutnim oslobađanjem (IR) koji sadrže žive sojeve Lactobacillus spp, sa ciljem obezbeđivanja brze i efikasne vaginalne primene. Formulacije vaginalnih kapsula i vaginalnih tableta razvijene su korišćenjem različitih ekscipijenasa i postupaka izrade (kapsulacija i direktna kompresija), a zatim je izvršena njihova karakterizacija i procenjene performanse. Rezultati su pokazali da sve formulacije punjenja kapsula imaju odgovarajuću protočnost i ujednačenosti doziranog oblika, pri čemu su tvrde želatinske kapsule (HGC) imale povoljnije vreme raspadanja u poređenju sa kapsulama od hidroksipropil metilceluloze (HPMC) i pululana. Formulacije tableta na bazi mikrokristalne celuloze (MCC) imale su optimalnu čvrstinu, friabilnost i raspadljivost, posebno pri nižim silama kompresije, čime je potvrđena multifunkcionalnost MCC-a kao punioca, vezivnog sredstva i dezintegratora. Važno je istaći da su oba farmaceutska oblika obezbedila očuvanu vitalnost sojeva Lactobacillus uz minimalne gubitke (~0,5 log), kiselu vaginalnu sredinu (pH 4,2) i pokazala robusnost u simuliranim biorelevantnim uslovima. Ovi nalazi ukazuju na to da vaginalne kapsule i vaginalne tablete sa trenutnim oslobađanjem mogu biti pogodan oblik živih bioterapijskih proizvoda sa brzim početkom delovanja, čime se doprinosi napretku strategija zasnovanih na mikrobiomu u zaštiti zdravlja žena.

Reference

Cordaillat-Simmons M, Rouanet A, Pot B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp Mol Med. 2020;52(9):1397–406. doi: 10.1038/s12276-020-0437-6.

Tseng C-H, Wong S, Yu J, Lee Y-Y, Jun T, Lai H-C, et al. Development of live biotherapeutic products: a position statement of Asia-Pacific Microbiota Consortium. Gut. 2025;74(5):334501. doi: 10.1136/gutjnl-2024-334501.

Ansari A, Son D, Hur YM, Park S, You Y-A, Kim SM, et al. Lactobacillus Probiotics Improve Vaginal Dysbiosis in Asymptomatic Women. Nutrients. 2023;15(8):1862. doi: 10.3390/nu15081862.

Lagenaur LA, Hemmerling A, Chiu C, Miller S, Lee PP, Cohen CR, Parks TP. Connecting the Dots: Translating the Vaginal Microbiome Into a Drug. J Infect Dis. 2020;223:S296–S306. doi: 10.1093/infdis/jiaa676.

Liu P, Lu Y, Li R, Chen X. Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Front Cell Infect Microbiol. 2023;13:1153894. doi: 10.3389/fcimb.2023.1153894.

Pendharkar S, Skafte-Holm A, Simsek G, Haahr T. Lactobacilli and Their Probiotic Effects in the Vagina of Reproductive Age Women. Microorganisms. 2023;11(3):636. doi: 10.3390/microorganisms11030636.

López-Moreno A, Aguilera M. Vaginal Probiotics for Reproductive Health and Related Dysbiosis: Systematic Review and Meta-Analysis. J Clin Med. 2021;10(7):1461. doi: 10.3390/jcm10071461.

Pagar R, Deshkar S, Mahore J, Patole V, Deshpande H, Gandham N, et al. The Microbial Revolution: Unveiling the Benefits of Vaginal Probiotics and Prebiotics. Microbiol Res. 2024;286:127787. doi: 10.1016/j.micres.2024.127787.

Brunaugh AD, Smyth HDC, Williams RO. Essential Pharmaceutics. Springer: Cham; 2019; pp. 149–61. doi: 10.1007/978-3-030-31745-4_10.

Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, et al. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics. 2021;13(6):884. doi: 10.3390/pharmaceutics13060884.

Owen DH, Katz DL. A vaginal fluid simulant. Contraception. 1999;59(2):91–5. doi: 10.1016/s0010-7824(99)00010-4.

Allen LV. Quality Control: Water Activity Considerations for Beyond-use Dates. Int J Pharm Compd. 2018;22(4):288–93.

Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients. 2019;11(7):1591. doi: 10.3390/nu11071591.

SuperTab® 24AN - Anhydrous lactose [Internet]. DFE Pharma; [cited 2025 Sep 6]. Available from: https://dfepharma.com/excipients/supertab-24an.

PEARLITOL 200 SD [Internet]. Roquette; [cited 2025 Sep 6]. Available from: https://www.roquette.com/innovation-hub/pharma/product-profile-pages/pearlitol-200sd-mannitol.

Buttini F, Quarta E, Allegrini C, Lavorini F. Understanding the Importance of Capsules in Dry Powder Inhalers. Pharmaceutics. 2021;13(11):1936. doi: 10.3390/pharmaceutics13111936.

Garbacz G, Cadé D, Benameur H, Weitschies W. Bio-relevant dissolution testing of hard capsules prepared from different shell materials using the dynamic open flow through test apparatus. Eur J Pharm Sci. 2014;57:264–72. doi: 10.1016/j.ejps.2013.08.039.

Glube N, von Moos L, Duchateau G. Capsule shell material impacts the in vitro disintegration and dissolution behaviour of a green tea extract. Results Pharma Sci. 2013;3(3):1–6. doi: 10.1016/j.rinphs.2013.08.002.

Rodklongtan A, Nitisinprasert S, Chitprasert P. Antioxidant activity and the survival-enhancing effect of ascorbic acid on Limosilactobacillus reuteri KUB-AC5 microencapsulated with lactose by spray drying. LWT. 2022;164:113645. doi: 10.1016/j.lwt.2022.113645.

Zodzika J, Rezeberga D, Donders G, Vedmedovska N, Vasina O, Pundure I, et al. Impact of vaginal ascorbic acid on abnormal vaginal microflora. Arch Gynecol Obstet. 2013;288(5):1039–44. doi: 10.1007/s00404-013-2876-y.

Rowe R, Sheskey P, Owen S. Handbook of Pharmaceutical Excipients. 5th ed. London: Pharmaceutical Press; 2006.

Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym. 2022;278:118968. doi: 10.1016/j.carbpol.2021.118968.

Singhal M, Sorjonen J, Wikström H, Upadhyay P, Alhusban F, Murphy D, et al. Exploring the impact of formulation and tablet shape on tablet integrity: A comprehensive investigation using mechanical and imaging techniques. J Pharm Sci. 2025;114(7):103832. doi: 10.1016/j.xphs.2025.103832.

Suksaeree J, Monton C, Chankana N, Charoenchai L. Microcrystalline cellulose promotes superior direct compressed Boesenbergia rotunda (L.) Mansf. extract tablet properties to spray-dried rice starch and spray-dried lactose. Arab J Basic Appl Sci. 2022;30(1):13–25. doi: 10.1080/25765299.2022.2153527.

Janssen PHM, Berardi A, Kok JH, Thornton AW, Dickhoff BHJ. The impact of lactose type on disintegration: An integral study on porosity and polymorphism. Eur J Pharm Biopharm. 2022;180:251–9. doi: 10.1016/j.ejpb.2022.10.012.

Wang B, Middleton A, Gibson R, Khanolkar J, Klymenko O, Wu C-Y. Understanding lethal mechanisms and preventive strategies in probiotic tablet production – a review. Powder Technol. 2024;443:119905. doi: 10.1016/j.powtec.2024.119905.

Objavljeno
2025/12/25
Rubrika
Originalni naučni rad