Inovacije u 3D štampanim farmaceutskim oblicima lekova za pedijatrijsku populaciju: Primer lozengi za žvakanje

  • Milica Ilić Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju, Beograd, Srbija
  • Maša Petrović Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju, Beograd, Srbija
  • Jelena Đuriš Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju, Beograd, Srbija
  • Sandra Cvijić Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju, Beograd, Srbija
Ključne reči: 3D štampa, lozenge za žvakanje, propranolol-hidrohlorid, natrijum-alginat, želatina

Sažetak


 

Trodimenzionalna (3D) štampa pruža široku platformu za proizvodnju personalizovanih farmaceutskih oblika prilagođenih uzrastu, koji odgovaraju specifičnim terapijskim potrebama pedijatrijske populacije. Među različitim oralnim farmaceutskim oblicima koji se mogu pripremiti pomoću 3D štampe, lozenge za žvakanje nude brojne prednosti, naročito za pedijatrijske pacijente. Ovaj rad prikazuje razvoj formulacije i izbor procesnih parametara za 3D-štampane lozenge za žvakanje koje sadrže propranolol-hidrohlorid kao model supstancu, sa potencijalnom primenom u pedijatrijskoj populaciji. Takođe, ističu se prednosti 3D štampe korišćenjem metode ekstruzije polučvrstog materijala. Želatina i natrijum-alginat korišćeni su kao nosači za 3D štampu. Varirani su vreme uranjanja u rastvor kalcijum-hlorida (tim) i oblik lozengi, pri čemu su sprovedena sledeća ispitivanja: procena organoleptičkih svojstava, variranje mase i debljine, vreme topljenja i raspadljivost lozengi, sadržaj i brzina rastvaranja propranolol-hidrohlorida. U početnoj fazi identifikovani su ključni parametri 3D štampe za izradu lozengi, a zatim je odabrana odgovarajuća formulacija. Dalja ispitivanja su pokazala da oblik lozengi, u kombinaciji sa varijacijama u vremenu uranjanja, utiče na farmaceutsko-tehnološke karakteristike izrađenih preparata. Formulacija zasnovana na kombinaciji želatine i natrijum-alginata u odnosu 1:3, uronjena 60 sekundi u rastvor kalcijum-hlorida, pokazala se pogodnom za 3D štampu lozengi za žvakanje.

Reference

Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics. 2023;15(10):2431.

Jaya Shree S, Saranya P, Vivek A, Srikanth B, Rakshana V, Srinivasan R. Recent Advances and Challenges in the Development of Pediatric Formulations: Review Article. JOPIR. 2024;2(5):28–38.

Yackey K, Stukus K, Cohen D, Kline D, Zhao S, Stanley R. Off-label Medication Prescribing Patterns in Pediatrics: An Update. Hosp Pediatr. 2019;9(3):186–93.

Gore R, Chugh PK, Tripathi CD, Lhamo Y, Gautam S. Pediatric Off-Label and Unlicensed Drug Use and Its Implications. Curr Clin Pharmacol. 2017;12(1):18–25.

Balan S, Hassali MA, Mak VSL. Challenges in pediatric drug use: A pharmacist point of view. Res Social Adm Pharm. 2017;13(3):653–5.

Ranmal SR, Walsh J, Tuleu C. Poor-tasting pediatric medicines: Part 1. A scoping review of their impact on patient acceptability, medication adherence, and treatment outcomes. Front Drug Deliv. 2025;5:1553286.

Guideline on pharmaceutical development of medicines for paediatric use [Internet]. London: EMA; 2013 [cited 2025 Sep 17]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-pharmaceutical-development-medicines-paediatric-use_en.pdf.

Reflection paper: formulations of choice for the paediatric population [Internet]. London: EMA; 2006 [cited 2025 Sep 17]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-formulations-choice-paediatric-population_en.pdf.

Preis, M, Öblom, H. 3D-Printed Drugs for Children—Are We Ready Yet?. AAPS PharmSciTech. 2017;18:303–8.

Tagami T, Ito E, Kida R, Hirose K, Noda T, Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int J Pharm. 2021;594(1):120118.

Beer N, Kaae S, Genina N, Sporrong SK, Alves TL, Hoebert J, et al. Magistral Compounding with 3D Printing: A Promising Way to Achieve Personalized Medicine. Ther Innov Regul Sci. 2023;57(1):26–36.

Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics. 2024;16(4):441.

Krause J, Müller L, Sarwinska D, Seidlitz A, Sznitowska M, Weitschies W. 3D Printing of Mini Tablets for Pediatric Use. Pharmaceuticals (Basel). 2021;14(2):143.

Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children’s personalized medicine. Int J Pharm. 2023;642:123131.

Pistone M, Racaniello GF, Rizzi R, Iacobazzi RM, Arduino I, Lopalco I, et al. Direct cyclodextrin based powder extrusion 3D printing of budesonide loaded mini-tablets for the treatment of eosinophilic colitis in paediatric patients. Int J Pharm. 2023;632:122592.

Chatzitaki AT, Mystiridou E, Bouropoulos N, Ritzoulis C, Karavasilil C, Fatouros DG. Semi-solid extrusion 3D printing of starch-based soft dosage forms for the treatment of paediatric latent tuberculosis infection. J Pharm Pharmacol. 2022;74:1498–506.

Rycerz K, Stepien KA, Czapiewska M, Arafat BT, Habashy R, Isreb A, et al. Embedded 3D Printing of Novel Bespoke Soft Dosage Form Concept for Pediatrics. Pharmaceutics. 2019;11(12):630.

Herrada-Manchón H, Rodríguez-González D, Fernández MA, Suñé-Pou M, Pérez-Lozano P, García-Montoya E, Aguilar E.. 3D printed gummies: Personalized drug dosage in a safe and appealing way. Int J Pharm. 2020;587:119687.

Van Kampen EE, Ayyoubi S, Willemsteijn L, van Bommel KJ, Ruijgrok EJ.. The Quest for Child-Friendly Carrier Materials Used in the 3D Semi-Solid Extrusion Printing of Medicines. Pharmaceutics. 2022;15(1):28.

Pothu R, Yamsani M. Lozenges formulation and evaluation: A review. Int J Pharm Sci Rev Res. 2014;5:290–8.

Malkawi WA, AlRafayah E, AlHazabreh M, AbuLaila S, Al-Ghananeem AM. Formulation Challenges and Strategies to Develop Pediatric Dosage Forms. Children (Basel). 2022;9(4):488.

Balıkçı BB, Güneş Ü. Accuracy of liquid drug dose measurements using different tools by caregivers: a prospective observational study. Eur J Pediatr. 2024;183(2):853–62.

Monteil M, Sanchez-Ballester NM, Devoisselle JM, Begu S, Soulairol I. Regulations on excipients used in 3D printing of pediatric oral forms. Int J Pharm. 2024;662:124402.

Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design. Pharmaceutics. 2022;14(8):1732.

Januskaite P, Xu X, Ranmal SR, Gaisford S, Basit AW, Tuleu C, Goyanes A.I spy with my little eye: a paediatric visual preferences survey of 3d printed tablets. Pharmaceutics. 2020;12:11001–16.

Polat F, Kaya Z. Prevalence and Pattern of Cardiovascular Symptoms and Diseases in Pediatric Patients: Insights from a Single-Center Observational Study with a Focus on Age and Gender. Genel Tıp Derg. 2024;34(1):130–5.

Candelino M, Tagi VM, Chiarelli F. Cardiovascular risk in children: a burden for future generations. Ital J Pediatr. 2022;48(1):57.

British National Formulary for children 2022–2023. British Medical Association, Royal Pharmaceutical Society of Great Britain, the Royal College of Paediatrics and Child Health, and the Neonatal and Paediatric Pharmacists Group. London, 2022.

Mediately [Internet]. Srbija: Mediately; 2025 [cited 2025 Aug 9]. Available from: https://mediately.co/rs/home?q=popranolol.

DailyMed [Internet]. Bethesda (MD): U.S. National Library of Medicine; 2025 [cited 2025 Aug 9]. Available from: https://dailymed.nlm.nih.gov/dailymed/search.cfm?labeltype=all&query=PROPRANOLOL+HYDROCHLORIDE.

EMC [Internet]. Hertfordshire (UK): Electronic Medicines Compendium; 2025 [cited 2025 Aug 14]. Available from: https://www.medicines.org.uk/emc/search?q=%22Propranolol+Hydrochloride.

Vogelpoel H, Welink J, Amidon GL, Junginger HE, Midha KK, Möller H, et al. Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: verapamil hydrochloride, propranolol hydrochloride, and atenolol. J Pharm Sci. 2004;93(8):1945–56.

National Center for Biotechnology Information [Internet]. Bethesda (MD): National Library of Medicine (US); 2024 [cited 2025 Aug 14]. Available from: https://www.ncbi.nlm.nih.gov/.

Mariz de Avelar MH, Efraim P. Alginate/pectin cold-set gelation as a potential sustainable method for jelly candy production. LWT. 2020;123:109–19.

Kuo CC, Qin H, Acuña DF, Cheng Y, Jiang X, Shi X. Printability of hydrogel composites using extrusion-based 3D printing and post-processing with calcium chloride. J Food Sci Nutr. 2019;5:51.

Martindale: The Complete Drug Reference. 36th ed. London: Pharmaceutical Press; 2009.

Vogelpoel H, Welink J, Amidon GL, Junginger HE, Midha KK, Möller H, et al. Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: verapamil hydrochloride, propranolol hydrochloride, and atenolol. J Pharm Sci. 2004;93(8):1945–56.

Kuo CC. Semi-solid extrusion-based 3D printing of biopolymer hydrogels and their applications in food [dissertation]. [Ames (IA)]: Iowa State University; 2021.

European pharmacopoeia. 11th ed, Strasbourg: Council of Europe, 2022.

Objavljeno
2025/10/26
Rubrika
Originalni naučni rad