Protein–protein Interaction Networks and Protein-ligand Docking – Contemporary Insights and Future Perspectives
Abstract
Traditional research means, such as in vitro and in vivo models, have consistently been used by scientists to test hypotheses in biochemistry. Computational (in silico) methods have been increasingly devised and applied to testing and hypothesis development in biochemistry over the last decade. The aim of in silico methods is to analyze the quantitative aspects of scientific (big) data, whether these are stored in databases for large data, or generated with the use of sophisticated modeling and simulation tools; to gain a fundamental understanding of numerous biochemical processes related, in particular, to large biological macromolecules by applying computational means to big biological data sets, and by computing biological system behavior. Computational methods used in biochemistry studies include proteomics-based bioinformatics, genome-wide mapping of protein-DNA interaction, as well as high-throughput mapping of the protein-protein interaction networks. Some of the vastly used molecular modeling and simulation techniques are Monte Carlo and Langevin (stochastic, Brownian) dynamics, statistical thermodynamics, molecular dynamics, continuum electrostatics, protein-ligand docking, protein-ligand affinity calculations, protein modeling techniques, and the protein folding process and enzyme action computer simulation. This paper presents a short review of two important methods used in the studies of biochemistry – protein-ligand docking and the prediction of protein-protein interaction networks.
References
2. Cicaloni V, Trezza A, Pettini F, Spiga O. Applications of in silico methods for design and development of drugs targeting protein-protein interactions. Curr Top Med Chem 2019;19(7):534-544.
3. Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. Plos Comput Biol 2007;3(3):e42.
4. Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part II. Experimental techniques and databases. Computational methods to predict protein and domain interaction partners. Plos Comput Biol 2007;3(4):e43.
5. Orchard S, Kerrien S, Abbani S, et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 2012;9(4):345-350.
6. Zahiri J, Bozorgmehr JH, Masoudi-Nejad A. Computational Prediction of Protein–Protein Interaction Networks: Algorithms and Resources. Curr Genomics 2013;14(6):397-414.
7. Mercatelli D, Scalambra L, Triboli L, et al. Gene regulatory network inference resources: A practical overview. BBA-Gene Regul Mech 2020;1863(6):Article number 194430
8. Li X, Li W, Zeng M, et al. Network-based methods for predicting essential genes or proteins: A survey. Brief Bioinform 2020;21(2):566-583.
9. Koutsoukas A, Simms B, Kirchmair J, et al. From in silico target prediction to multi-target drug design: Current databases, methods and applications. J Proteomics 2011;74(12):2554-2574.
10. Juan D, Pazos F, Valencia A. High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci USA 2008;105(3):934-949.
11. Valencia A, Pazos F. Computational methods for the prediction of protein interactions. Curr Opin Struc Biol 2001;12(3):368-373.
12. Skrabanek L, Saini HK, Bader GD, Enright AJ. Computational prediction of protein-protein interactions. Mol Biotechnol 2008;38(1):1-17.
13. Enright A, Iliopoulos I, Kyrpides N, Ouzounis C. Protein interaction maps for complete genomes based on gene fusion events. Nature 1999;402(6757):86-90.
14. Aloy P, Russell RB. Interrogating protein interaction networks through structural biology. Proc Natl Acad Sci USA 2002;99(9):5896-901.
15. Hue M, Riffle M, Vert JP, Noble WS. Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics 2010;11(1):144.
16. Li M, Lu Y, Wang J, et al. A topology potential-based method for identifying essential proteins from PPI networks. IEEE ACM T Comput Bi 2015;12(2):372-383.
17. Lei X, Yang X, Fujita H. Random walk based method to identify essential proteins by integrating network topology and biological characteristics. Knowl-Based Syst 2019;167:53-67.
18. Luo J, Kuang L. A new method for predicting essential proteins based on dynamic network topology and complex information. Comput Biol Chem 2104;52:e34-e42.
19. Goldberg DS, Roth FP. Assessing experimentally derived interactions in a small world. Proc Natl Acad Sci USA 2003;100(8):4372-6.
20. Tikk D, Thomas P, Palaga P, et al. A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature. PLoS Comput Biol 2010;6(7):Article number e1000837
21. Bui Q-C, Katrenko S, Sloot PMA. A hybrid approach to extract protein-protein interactions. Bioinformatics 2011;27(2):Article number btq620
22. He M, Wang Y, Li W. PPI finder: A mining tool for human protein-protein interactions. PLoS ONE 2009;4(2):Article number e4554
23. Jaeger S, Gaudan S, Leser U, Rebholz-Schuhmann D. Integrating protein-protein interactions and text mining for protein function prediction. BMC Bioinformatics 2008;9(Suppl 8):S2.
24. Shen J, et al. Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci USA 2007;104(11):4337-41.
25. Ben Hur A, Ong CS, Sonnenburg S, et al. Support Vector Machines and Kernels for Computational Biology. PLoS Comput Biol 2008;4(10):e1000173.
26. Rashid M, Ramasamy S, PS Raghava G. A simple approach for predicting protein-protein interactions. Curr Pro Pept Sci 2010;11(7):589-600.
27. Chatterjee P, Basu S, Kundu M, et al. PPI_SVM: Prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables. Cell Mol Biol Lett 2011;16(2):264-278.
28. Zhang M, Su Q, Lu Y, et al. Application of machine learning approaches for protein-protein interactions prediction. Med Chem 2017;13(6):506-514.
29. Zhang L, Yu G, Xia D, Wang J. Protein–protein interactions prediction based on ensemble deep neural networks. Neurocomputing 2019;324:10-19.
30. Li H, Gong X-J, Yu H, Zhou C. Deep neural network based predictions of protein interactions using primary sequences. Molecules 2018;23(8): Article number 1923
31. Lin X, Chen X-W. Heterogeneous data integration by tree-augmented naïve Bayes for protein-protein interactions prediction. Proteomics 2013;13(2):261-268.
32. Thuy Phan TT, Ohkawa T. Protein-protein interaction extraction with feature selection by evaluating contribution levels of groups consisting of related features. BMC Bioinformatics 2016;17:Article number 246
33. Marini S, Xu Q, Yang Q. In silico protein-protein interaction prediction with sequence alignment and classifier stacking. Curr Protein Pept Sc 2011;12(7):614-620.
34. Jia J, Xiao X, Liu B. Prediction of Protein–Protein Interactions with Physicochemical Descriptors and Wavelet Transform via Random Forests. JALA-J Lab Autom 2016;21(3):368-377.
35. Liu W, Guo Y, Luo J, et al. Prediction of kinase-specific phosphorylational interactions using random forest. Chemometr Intell Lab 2013;126:117-122.
36. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002;47(4):409-443.
37. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3(11):935-949.
38. Autor 2015.
39. Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed 2002;41(15):2644-2676.
40. Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biolmol Struct 2003;32:335-373.
41. Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem 2006;49(11):3315-3321.
42. Autor 2019.
43. Autor 2019.
44. Autor 2018.
45. Autor 2018.
46. Autor 2020.
47. Autor 2020.
