Comparative study of two different zeolites BEA and ZSM-5 exchanged by copper and iron via the oxidation of phenol by hydrogen peroxide
Comparative study of two different zeolites BEA and ZSM-5 exchanged by copper and iron via the oxidation of phenol by hydrogen peroxide
Abstract
Introduction/Purpose: Water pollution by organic compounds such as phenol poses a major environmental risk. This study aims to compare the catalytic efficiency of ZSM-5 and BEA zeolites, doped with iron (Fe) and copper (Cu), for the wet oxidation of phenol using hydrogen peroxide (H₂O₂).
Method: BEA and ZSM-5 zeolites were synthesized via hydrothermal methods, then ion-exchanged to incorporate Cu²⁺ and Fe²⁺. The catalysts were characterized using XRD, FTIR, SEM, and XPS. Phenol oxidation was carried out at 80 °C in aqueous medium with an H₂O₂/phenol molar ratio ranging from 10:1 to 15:1. The reaction products were analyzed by HPLC.
Results: The crystalline structures of the zeolites were maintained after ion exchange. The metals were well dispersed on the surface. Fe-BEA and Fe-ZSM-5 catalysts showed the highest activity (up to 99% conversion), followed by Cu-BEA (88%) and Cu-ZSM-5 (68%). The pure zeolites exhibited low activity (<10%). The optimal H₂O₂/phenol ratio was 14:1. Fe-BEA proved to be the most effective, combining high activity with enhanced diffusion within the pores.
Conclusion: Iron-exchanged zeolites, particularly Fe-BEA, are highly effective catalysts for phenol oxidation in aqueous media, outperforming both copper-doped and pure forms. The porous structure and the nature of the metal are key factors determining catalytic performance.
References
Alattar, S.A., Sukkar, K.A. & Alsaffar. M.A. 2024. Phenol removal from wastewater in petroleum refineries by managing flow characteristics and nanocatalyst in ozonized bubble column. Journal of Petroleum Chemistry, 159, pp.159-169. Available at: https://doi.org/10.1134/S0965544124020117
Alejandre, A., Medina, F., Rodriguez, X., Salagre, P. & Sueiras, J. E. 2000. Preparation and activity of copper, nickel and copper-nickel-al mixed oxides via hydrotalcite-like precursors for the oxidation of phenol aqueous solutions. Journal of Studies in Surface Science and Catalysis, 130, pp. 1763-1768. Available at: https://doi.org/10.1016/S0167-2991(00)80456-5
Atoguchi, T., Kanougi, T., Yamamoto, T. & Yao, S. 2004. Phenol oxidation into catechol and hydroquinone over H-MFI, H-MOR, H-USY and H-BEA in the presence of ketone. Journal of Molecular Catalysis A: Chemical, 220(2), pp.183-187. Available at: https://doi.org/10.1016/j.molcata.2003.10.026
Ávila, M.I., Alonso-Doncel, M.M., Briones, L., Gómez-Pozuelo, J., Escola, J.M., Serrano, D.P., Peral, A. & Botas, J.A. 2024. Catalytic upgrading of lignin-derived bio-oils over ion-exchanged H-ZSM-5 and H-beta zeolites. Journal of Catalysis Today, 427, p.114419. Available at : https://doi.org/10.1016/j.cattod.2023.114419
Aziz, A., Park, H., Kim, S. & Kim, K. S. 2016. Phenol and ammonium removal by using Fe-ZSM-5 synthesized by ammonium citrate iron source. International Journal of Environmental Science and Technology, 13, pp.2805–2816. Available at: https://doi.org/10.1007/s13762-016-1107-z
Bahranowski, K., Dula, R., Gasior, M., Łabanowska, M., Michalik, A., Vartikian, L. A. & Serwicka, E. M. 2001. Oxidation of aromatic hydrocarbons with hydrogen peroxide over Zn, Cu, Al-layered double hydroxides. Journal of Applied clay science, 18(1-2), pp.93-101. Available at: https://doi.org/10.1016/S0169-1317(00)00033-8
Bania, K. K. & Deka, R. C. 2013. Zeolite-y encapsulated metal picolinato complexes as catalyst for oxidation of phenol with hydrogen peroxide. Journal of Physical Chemistry C, 117(22), pp.11663-11678. Available at: https://doi.org/10.1021/jp402439x
Bok, T. O., Andriako, E. P., Knyazeva, E. E. & Ivanova, I.I. 2020. Engineering of zeolite BEA crystal size and morphology via seed-directed steam assisted conversion. Journal of Rsc Advances , 10 (63), 38505-38514. Available at: https://doi.org/10.1039/D0RA07610D
Broekman, J. O. P. & Deuss, P. J. 2024. Insights into the benign, selective catalytic oxidation of HMF to HMFCA in water using [MnIV2 (μ-O) 3 (tmtacn) 2] 2+ and Hydrogen Peroxide. Journal of Organometallics, 43(11), pp.1264-1275. Available at: https://doi.org/10.1021/acs.organomet.4c00109
Camblor, M.A., Corma, A. & Valencia, S. 1996. Spontaneous nucleation and growth of pure silica zeolite-β free of connectivity defects. Journal of Chemical Communications, 20, pp.2365-2366. Available at: https://doi.org/10.1039/CC9960002365
Cao, K., Yang, F., Wan, H., Duan, X., Shi, J. & Sun, Z. 2025. A selective oxidative depolymerization of larch lignin to ethyl vanillate by multifunctional catalysts combining alkaline ionic liquid and polyoxometalates with hydrogen peroxide. International Journal of Biological Macromolecules, 295, p.139642. Available at: https://doi.org/10.1016/j.ijbiomac.2025.139642
Coudurier, G., Naccache, C. & Vedrine, J.C. 1982. Uses of IR spectroscopy in identifying ZSM zeolite structure. Journal of the Chemical Society, Chemical Communications, 24, pp.1413–1415. Available at: https://doi.org/10.1039/C39820001413
Chen, X., Zhou, S., Wang, L., Zhang, C., Gao, S., Yu, D., Cheng, Y., Xiaoqiang, V., Yu, X. & Zhao, Z. 2024. Facile preparation of Fe-Beta zeolite-supported transition metal oxide catalysts and their catalytic performance for the simultaneous removal of NOx and soot. Chinese Journal of Chemical Engineering, 76, pp.10-20. Available at: https://doi.org/10.1016/j.cjche.2024.07.016
Chen, Z., Meng, G., Han, Z., Li, H., Chi, S., Hu, G. & Zhao, X. 2025. Interfacial anchoring cobalt species mediated advanced oxidation: Degradation performance and mechanism of organic pollutants. Journal of Colloid and Interface Science, 679, pp.67-78. Available at: https://doi.org/10.1016/j.jcis.2024.10.097
Devard, A., Brussino, P., Marchesini, F. A. & Ulla, M. A. 2019. Cu (5%)/Al2O3 catalytic performance on the phenol wet oxidation with H2O2: Influence of the calcination temperature. Journal of Environmental Chemical Engineering, 7(4), p.103201. Available at: https://doi.org/10.1016/j.jece.2019.103201
Diallo, M. M., Mijoin, J., Laforge, S. & Pouilloux, Y. 2016. Preparation of Fe-BEA zeolites by isomorphous substitution for oxidehydration of glycerol to acrylic acid. Journal of Catalysis Communications, 79, pp. 58-62. Available at: https://doi.org/10.1016/j.catcom.2016.03.003
Dou, X., Yan, T., Li, W., Zhu, C., Chen, T., Lo, B. T. W., Xiao,H. & Liu, L. 2025. Structure–reactivity relationship of zeolite-confined Rh catalysts for hydroformylation of linear α-olefins. Journal of the American Chemical Society, 147 (3), pp. 2726–2736. Available at: https://doi.org/10.1021/jacs.4c15445
Gabrienko, A. A., Kolganov, A. A., Yashnik, S. A., Kriventsov, V. V. & Stepanov, A. G. 2025. Methane to methanol transformation on Cu2+/H‐ZSM‐5 zeolite. characterization of copper state and mechanism of the reaction. Chemistry–A European Journal, 31(10), e202403167. Available at: https://doi.org/10.1002/chem.202403167
Ghaffari, Y., Gupta, N. K., Bae, J. & Kim, K. S. 2019. Heterogeneous catalytic performance and stability of iron-loaded ZSM-5, zeolite-A, and silica for phenol degradation: a microscopic and spectroscopic approach. Journal of Catalysts, 9(10), p.859. Available at: https://doi.org/10.3390/catal9100859
He, Y., Lin, H., Luo, M., Liu, J., Dong, Y. & Li, B. 2020. Highly efficient remediation of groundwater co-contaminated with Cr (VI) and nitrate by using nano-Fe/Pd bimetal-loaded zeolite: process product and interaction mechanism. Journal of Environmental Pollution, 263, p.114479. Available at: https://doi.org/10.1016/j.envpol.2020.114479
Hunt, J.P. & Taube, H. 1952. The photochemical decomposition of hydrogen peroxide. Journal of the American Chemical Society, 74(23), pp.5999–6002. Available at: https://doi.org/10.1021/ja01143a052
IZA International Zeolite Association. 2018. Database of Zeolite Structures. [online] Available at: https://www.iza-structure.org/databases/ [Accessed : le 27 April 2025]
Ji, F., Li, C., Liu, Y. & Liu, P. 2014. Heterogeneous activation of peroxymonosulfate by Cu/ZSM5 for decolorization of Rhodamine B. Journal of Separation and Purification Technology , 135 , pp.1-6. Available at: https://doi.org/10.1016/j.seppur.2014.07.050
Jiang, S., Zhang, H., Yan, Y. & Zhang, X. 2017. Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater. Journal of Microporous and Mesoporous Materials, 240, pp.108-116. Available at : https://doi.org/10.1016/j.micromeso.2016.11.020
Jiang, Y., Yu, T., Zeng, S. & Luo, W. 2025. Direct and selective oxidation of methane into methanol over Cu/Fe-containing zeolites. Journal of Molecular Catalysis, 571, p.114721. Available at: https://doi.org/10.1016/j.mcat.2024.114721
Keshri, V. & Dutt, KR. 2021. Inhibitory effect of phenolic and flavonoidal content of H. indicum root extract on 1,1-diphenyl-2-picrylhydrazyl radicals. Research Journal of Pharmaceutical and Technology, 14(1), pp.235-238. Available at: https://doi.org/10.5958/0974-360X.2021.00041.X
Khader, E. H., Khudhur, R. H., Mohammed, T. J., Mahdy, O. S., Sabri, A. A., Mahmood, A. S. & Albayari, T. M. 2024. Evaluation of adsorption treatment method for removal of phenol and acetone from industrial wastewater. Journal of Desalination and Water Treatment, 317, p.100091. Available at: https://doi.org/10.1016/j.dwt.2024.100091
Kumar, N. D. & Swaminathan, M. 2024. Review on hierarchically porous BEA and ZSM-5 zeolites and Its industrial catalytic applications. Journal of ES Materials & Manufacturing, 24, p.1151. Available at: https://doi.org/10.30919/esmm1151
Lee, K. X., Tsilomelekis, G. & Valla, J. A. 2018. Removal of benzothiophene and dibenzothiophene from hydrocarbon fuels using CuCe mesoporous Y zeolites in the presence of aromatics. Journal of Applied Catalysis B: Environmental, 234, pp.130-142. Available at: https://doi.org/10.1016/j.apcatb.2018.04.022
Lin, Q., Feng, X., Zhang, H., Lin, C., Liu, S., Xu, H. & Chen, Y. 2018. Hydrothermal deactivation over CuFe/BEA for NH3-SCR. Journal of industrial and engineering chemistry, 65, pp.40-50. Available at: https://doi.org/10.1016/j.jiec.2018.04.009
Lin, Q., Liu, S., Xu, S., Liu, J., Xu, H., Chen, Y. & Dan, Y. 2020. Fabricate surface structure-stabilized Cu/BEA with hydrothermal-resistant via si-deposition for NOx abatement. Journal of Molecular Catalysis, 495, p.111153. Available at: https://doi.org/10.1016/j.mcat.2020.111153
Liu, H., Kim, G. E., Hong, C. O., Song, Y. C., Lee, W. K., Liu, D., Jang, S.H. & Park, Y. K. 2021. Treatment of phenol wastewater using nitrogen-doped magnetic mesoporous hollow carbon. Journal of Chemiosphere, 271, p.129595. Available at: https://doi.org/10.1016/j.chemosphere.2021.129595
Liu, T., Wang, H., Hu, Z. & Wei, F. 2021. Highly efficient adsorption of thiol compounds by ZSM-5 zeolites: Governing mechanisms. Journal of Microporous and Mesoporous Materials, 316, p.110968. Available at: https://doi.org/10.1016/j.micromeso.2021.110968
Liu, Y., Lu, H. & Wang, G. 2021. Preparation of CuO/HZSM-5 catalyst based on fly ash and its catalytic wet air oxidation of phenol, quinoline and indole. Journal of Materials Research Express, 8(1), p.015503. Available at: https://doi.org/10.1088/2053-1591/abd6a4
Liu, Y., Osta, E. H., Poryvaev, A. S., Fedin, M. V., Longo, A., Nefedov, A. & Kosinov, N. 2023. Direct conversion of methane to zeolite-templated carbons, light hydrocarbons, and hydrogen. Journal of Carbon, 201, pp.535-541. Available at: https://doi.org/10.1016/j.carbon.2022.09.050
Martins, A., Nunes, N., Carvalho, A. P. & Martins, L. M. 2022. Zeolites and related materials as catalyst supports hydrocarbon oxidation reactions. Journal of Catalysts, 12 (2), p.154. Available at: https://doi.org/10.3390/catal12020154
Mohd, A. 2022. Presence of phenol in wastewater effluent and its removal: an overview. International Journal of Environmental Analytical Chemistry, 102(6), pp.1362-1384. Available at: https://doi.org/10.1080/03067319.2020.1738412
Mumtaz, H., Werle, S. & Sobek, S. 2024. A waste wet oxidation technique as a solution for chemical production and resource recovery in Poland. Journal of Clean Technologies and Environmental Policy, 26(5), pp.1363-1382. Available at: https://doi.org/10.1007/s10098-023-02520-4
Nguyen, H. M. & Carreon, M. L. 2022. Non-thermal plasma-assisted deconstruction of high-density polyethylene to hydrogen and light hydrocarbons over hollow ZSM-5 microspheres. Journal of ACS Sustainable Chemistry & Engineering, 10(29), pp. 9480-9491. Available at: https://doi.org/10.1021/acssuschemeng.2c01959
Pan, C., Zhang, Q., Zhang, W., Bao, J., Dai, G., Liu, S.& Lan, J. 2025. Wet scrubbing coupled with advanced oxidation process for removal of chlorobenzene: A study of performance and mechanisms. Journal of Environmental Research, 268, p.120779. Available at: https://doi.org/10.1016/j.envres.2025.120779
Peng, J., Zhou, P., Zhou, H., Huang, B., Sun, M., He, CS., Zhang, H., Ao, Z., Liu, W. & Lai, B. 2023. Removal of phenols by highly active periodate on carbon nanotubes: A mechanistic investigation. Journal of Environmental Science & Technology, 57(29), pp.10804–10815. Available at: https://doi.org/10.1021/acs.est.2c08266
Ren, T. I. A. N., WANG, S. Y., LIAN, C. S., Xu, W. U., Xia, A. N. & XIE, X. M. 2019. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance. Journal of Fuel Chemistry and Technology, 47(12), pp.1476-1485. Available at: https://doi.org/10.1016/S1872-5813(19)30059-3
Said, K. A. M., Ismail, A. F., Karim, Z. A., Abdullah, M. S. & Hafeez, A. 2021. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Safety and Environmental Protection, 151, pp. 257-289. Available at: https://doi.org/10.1016/j.psep.2021.05.015
Saputera, W. H., Putrie, A. S., Esmailpour, A. A., Sasongko, D., Suendo, V. & Mukti, R. R. 2021. Technology advances in phenol removals: Current progress and future perspectives. Journal of Catalysts, 11(8), p.998. Available at: https://doi.org/10.3390/catal11080998
Sazama, P., Moravkova, J., Sklenak, S., Vondrova, A., Tabor, E., Sadovska, G. & Pilar, R. 2020. Effect of the nuclearity and coordination of Cu and Fe sites in β zeolites on the oxidation of hydrocarbons. Journal of ACS Catalysis, 10(7), pp.3984-4002. Available at: https://doi.org/10.1021/acscatal.9b05431
Selvam, T., Bandarapu, B., Mabande, G. T. P., Toufar, H. & Schwieger, W. 2003. Hydrothermal transformation of a layered sodium silicate, kanemite, into zeolite Beta (BEA). Journal of Microporous and Mesoporous Materials, 64(1-3), 41-50. Available at: https://doi.org/10.1016/S1387-1811(03)00508-0
Shaida, M. A., Verma, S., Talukdar, S., Kumar, N., Mahtab, M. S., Naushad, M. & Farooqi, I. H. 2023. Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. Journal of Molecular Liquids, 374, p.121259. Available at: https://doi.org/10.1016/j.molliq.2023.121259
Shirvani, M., Zhang, T., Gu, Y. & Hosseini-Sarvari, M. 2025. Sorghum grain as a bio-template: Emerging, cost-effective, and metal-free synthesis of C-doped g-C₃N₄ for photo-degradation of antibiotic, bisphenol A (BPA), and phenol under solar light irradiation. Journal of Environmental Science and Pollution Research, 32(4), pp.2036-2054. Available at: https://doi.org/10.1007/s11356-024-35868-1
Sobuś, N. & Czekaj, I. 2021. Comparison of synthetic and natural zeolite catalysts’ behavior in the production of lactic acid and ethyl lactate from biomass-derived dihydroxyacetone. Journal of Catalysts, 11(8), p.1006. Available at: https://doi.org/10.3390/catal11081006
Song, S., Wu, G., Dai, W., Guan, N. & Li, L. 2016. Al-free Fe-beta as a robust catalyst for selective reduction of nitric oxide by ammonia. Journal of Catalysis Science & Technology, 6(23), pp.8325–8335. Available at: https://doi.org/10.1039/C6CY02124G
Sun, H., Li, J., Zhang, Y., Zhuang, L., Zhou, Z., Ren, Y., Xu, X., He, J. & Xue, Y. 2025. Treatment of high concentration phenol wastewater by low-frequency ultrasonic cavitation and long-term pilot scale study. Journal of Chemosphere, 370, p.143937. Available at: https://doi.org/10.1016/j.chemosphere.2024.143937
Sun, L., Zhang, X., Chen, L., Zhao, B., Yang, S. & Xie, X. 2016. Comparison of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 121, pp.342–346. Available at: https://doi.org/10.1016/j.jaap.2016.08.015
Taran, O.P., Zagoruiko, A.N., Yashnik, S.A., Ayusheev, A.B., Pestunov, A.V., Prosvirin, I.P., Prihodko, R.V., Goncharuk, V.V. & Parmon, V.N. 2018. Wet peroxide oxidation of phenol over carbon/zeolite catalysts: Kinetics and diffusion study in batch and flow reactors. Journal of Environmental Chemical Engineering, 6(2), pp.2551–2560. Available at: https://doi.org/10.1016/j.jece.2018.03.017
Thomsen, L. B. S., Anastasakis, K. & Biller, P. 2022. Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge. Journal of Water research, 209, p.117863. Available at: https://doi.org/10.1016/j.watres.2021.117863
Tian, K., Pan, J., Liu, Y., Wang, P., Zhong, M., Dong, Y. & Wang, M. 2024. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1, 4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species. Journal of Environmental Science and Pollution Research , 31 (13), pp.19738-19752. Available at: https://doi.org/10.1007/s11356-024-32287-0
Toloza-Blanco, L., Góra-Marek, K., Tarach, K. A., Sobalska, J., Martínez-Triguero, J., Plá-Hernandez, A. & Palomares, A. E. 2024. Catalytic oxidation of volatile organic compounds with Mn-zeolites. Journal of Catalysis Today, 432, p.114570. Available at: https://doi.org/10.1016/j.cattod.2024.114570
Treacy, M.M.J. & Higgins, J.B. 2007. Collection of Simulated XRD Powder Patterns for Zeolites (5th ed.). Amsterdam: Elsevier. Available at: https://doi.org/10.1016/B978-0-444-53067-7.X5470-7
Valkaj, K. M., Wittine, O., Margeta, K., Granato, T., Katović, A. & Zrnčević, S. 2011. Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts. Polish Journal of Chemical Technology, 13(3), pp.28-36. Available at: https://doi.org/10.2478/v10026-011-0033-6
Villegas, V. A. R., Ramirez, J. I. D. L., Perez-Sicairos, S., Yocupicio-Gaxiola, R. I., González-Torres, V. & Petranovskii, V. 2024. Catalyst for lactose hydrolysis based on zeolite Y modified with Fe species by ultrasound treatment. Journal of Environmental Advances, 15, p.100475. Available at: https://doi.org/10.1016/j.envadv.2023.100475
Wang, H., Xu, R., Jin, Y. & Zhang, R. 2019. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts. Journal of Catalysis Today, 327, pp.295-307. Available at: https://doi.org/10.1016/j.cattod.2018.04.035
Wu, Y., Zhang, H. & Yan. Y. 2020. Effect of copper ion-exchange on catalytic wet peroxide oxidation of phenol over ZSM-5 membrane. Journal of Environmental Management, 270, p.110907. Available at: https://doi.org/10.1016/j.jenvman.2020.110907
Xie, J., Zhuang, W., Yan, N., Du, Y., Xi, S., Zhang, W., Tang, J., Zhou, Y. & Wang, J. 2017. Directly synthesized V-containing BEA zeolite: Acid-oxidation bifunctional catalyst enhancing C-alkylation selectivity in liquid-phase methylation of phenol. Chemical engineering journal, 328, pp.1031-1042. Available at: https://doi.org/10.1016/j.cej.2017.07.100
Zang, J., Yu, H., Liu, G., Hong, M., Liu, J. & Chen, T. 2023. Research progress on modifications of zeolite Y for improved catalytic properties. Journal of Inorganics, 11(1), p.22. Available at: https://doi.org/10.3390/inorganics11010022
Zhang, J., Shao, S., Guo, Q., Duan, X., Liu, Y. & Jiao, W. 2025. Co-removal of phenol and Cr (VI) by high gravity coupled heterogeneous catalytic ozonation-adsorption. Journal of Separation and Purification Technology, 358(Part A), p.130297. Available at: https://doi.org/10.1016/j.chemosphere.2024.143937
Zhou, X., Wang, M., Yan, D., Li, Q. & Chen, H. 2019. Synthesis and performance of high efficient diesel oxidation catalyst based on active metal species-modified porous zeolite BEA. Journal of Catalysis, 379, 138-146. Available at: https://doi.org/10.1016/j.jcat.2019.09.029
Copyright (c) 2025 Fatiha TALHAOUI

This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
