Neke teoreme o nepokretnoj tački preko γ-ψS kontrakcija na S-metričkim prostorima

  • Nihal Tas Balikesir University
  • Elif Kaplan Ondokuz Mayis University
Ključne reči: S-metrički prostor, teorema o nepokretnoj tački, generalizovana kontrakcija, kontrakcija integralnog tipa, fiksni krug, geometrijski pristup, funkcija aktivacije, neuronske mreže

Sažetak


In this paper, the authors introduce generalized contractive conditions on $%

S $-metric spaces, aiming to expand the existing theory of fixed points in

such spaces. They apply these new contractive conditions to prove several

fixed-point theorems, including integral-type fixed-point results.

Additionally, they employ a geometric approach to derive new fixed-circle

theorems on $S$-metric spaces, providing necessary examples to illustrate

these results. In the concluding section, the paper highlights the

significance of these findings, particularly in the context of activation

functions, emphasizing the potential applications of their work in areas

like computational mathematics and neural networks.

Reference

Bimol, T., Priyobarta, N., Rohen, Y., & Singh, KA. 2024. Fixed points for Scontractions of type E on S-metric spaces. Nonlinear Functional Analysis and Applications, 29(3), pp.635-648. Available at: https://doi.org/10.22771/nfaa.2024.29.03.02

Branciari, A. 2002. A fixed point theorem for mappings satisfying a general contractive condition of integral type. International Journal of Mathematics and Mathematical Sciences, 29 (9), pp.531-536. Available at: https://onlinelibrary.wiley.com/doi/pdf/10.1155/S0161171202007524

Fetouci, N., & Radenovic, S. 2009. Some remarks and corrections of recent results from the framework of S-metric spaces. Journal of Siberian Federal University. Mathematics & Physics, 2(3), pp.258-270.

Hieu, N T., Ly, NT. & Dung, NV. 2015. A generalization of Ciric quasicontractions for maps on S-metric spaces. Thai Journal of Mathematics, 13 (2), pp.369-380. Available at: https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/515

Iqbal, M., Batool, A., Hussain, A., & Alsulami, H. 2024. Fuzzy Fixed Point Theorems in S-Metric Spaces: Applications to Navigation and Control Systems. Axioms, 13(9), pp.650. Available at: https://doi.org/10.3390/axioms13090650

Mlaiki, N., Çelik, U., Taş, N., Özgür, NY. & Mukheimer, A. 2018. Wardowski type contractions and the fixed-circle problem on S-metric spaces. Journal of Mathematics, 9. Available at: https://doi.org/10.1155/2018/9127486

Nair, V. & Hinton, GE. 2010. Rectified linear units improve restricted boltzmann machines, In 27th International Conference on Machine Learning, ICML’10, Haifa, Israel on June 21-24, 2010, pp.807-814. ISBN: 978-1-60558-907-7

Özgür, NY. & Taş, N. 2017. Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25). Mathematical Sciences, 11(1), pp.7-16. Available at: https://doi.org/10.1007/s40096-016-0199-4

Özgür, NY. & Taş, N. 2019. Some fixed-circle theorems on metric spaces. Bulletin of the Malaysian Mathematical Sciences Society , 42(4), pp.1433-1449. Available at: https://doi.org/10.1007/s40840-017-0555-z

Özgür, NY. & Taş, N. 2019. Fixed-circle problem on S-metric spaces with a geometric viewpoint. Facta Universitatis, Series: Mathematics and Informatics , 34(3), pp. 459-472. Available at: https://doi.org/10.22190/FUMI1903459O

Raji, M., Rajpoot, AK., Al-omeri, WF., Rathour, L., Mishra, LN. & Mishra, VN. 2024. Generalized α-ψ contractive type mappings and related fixed point theorems with applications. Tuijin Jishu/Journal of Propulsion Technology, 45(10), pp.5235-5246. Available at: https://www.propulsiontechjournal.com/index.php/journal/article/view/5543/3766

Samet, B., Vetro, C., Vetro, P. 2012. Fixed point theorem for contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75, pp.2154-2165. Available at: https://doi.org/10.1016/j.na.2011.10.014

Sedghi, S., Shobe, N. & Aliouche, A. 2012. A generalization of fixed point theorems in S-metric spaces. Matematički Vesnik, 64(3), pp.258-266. Available at: https://www.emis.de/journals/MV/123/mv12309.pdf

Sedghi, S., & Van Dung, N. 2014. Fixed point theorems on S-metric spaces. Matematički Vesnik, 255, pp.113-124. Available at: https://www.emis.de/journals/MV/141/mv14112.pdf

Objavljeno
2025/10/13
Rubrika
Originalni naučni radovi