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Abstract: 
Introduction/Purpose: The study addressed the existence and uniqueness 
of mild solutions for a class of periodic semi-linear functional differential 
inclusion systems with state-dependent delays. Such systems are of 
growing interest due to their wide range of applications in control theory, 
biological systems, and engineering models involving time delays and 
uncertainties. 
Methods: The investigation was conducted within the framework of Banach 
spaces. The Perov fixed point theorem, known for its effectiveness in 
handling systems with multiple components, was applied to establish the 
existence of mild solutions. The analytical approach incorporated 
techniques suitable for differential inclusions and operator theory, 
particularly focusing on systems influenced by state-dependent delays. 
Results: Several results were obtained concerning the existence and 
uniqueness of mild solutions for the considered system. The application of 
the Perov fixed point theorem allowed the derivation of sufficient conditions 
under which such solutions exist. Furthermore, the periodic nature of the 
system was accounted for, ensuring the solutions adhered to the prescribed 
temporal structure. 
Conclusions: The findings confirmed that under specific assumptions, the 
system admits at least one mild solution. The results contributed to the 
theoretical foundation of functional differential inclusions with delays. 
Researchers were encouraged to further explore these outcomes and to 
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3 develop computational and numerical methods for approximating the 
theoretical solutions, thereby extending the applicability of the current 
research. 

Key words: mild solutions, state-dependent delays, Banach spaces, 
multivalued maps, fixed points, functional differential inclusions, semi-
linear systems 

Introduction  
Functional differential equations and inclusions play a crucial role in 

various fields such as biology, physics, and engineering, and have 
attracted significant attention in recent years.To navigate the extensive 
literature on functional differential equations, valuable resources include 
books by Hale (1977), Hale and Lunel (2013), Kolmanovskii & Myshkis, 
(1999), along with the references contained therein. 

Over the past decades, researchers have conducted extensive 
investigations into the existence and uniqueness of solutions for semi-
linear functional differential equations and inclusions. Various types of 
solutions, including mild, strong, classical, almost periodic, and almost 
automorphic solutions, have been explored using methodologies such as 
semigroup theory, fixed point arguments, degree theory, and measures of 
non-compactness. Noteworthy contributions to this body of work can be 
found in books by (Ahmed, 1991, Kolmanovskii et al, 1999 & Wu 1996), 
and the related references such as the articles by (Daoudi et al, 2018; 
Mohamed & Tayeb, 2019). 

In this paper, we consider a system with state-dependent delays of 
the following form: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥′(𝑡𝑡) − 𝐴𝐴1𝑥𝑥(𝑡𝑡) ∈ 𝐹𝐹1 �𝑡𝑡 , 𝑥𝑥�𝑡𝑡 − 𝒯𝒯1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�𝑡𝑡 − 𝒯𝒯2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� , 𝑡𝑡 ∈ 𝐽𝐽 ≔ [0, 𝑏𝑏]

𝑦𝑦′(𝑡𝑡) − 𝐴𝐴2𝑦𝑦(𝑡𝑡) ∈ 𝐹𝐹2 �𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝒯𝒯1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�𝑡𝑡 − 𝒯𝒯2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� , 𝑡𝑡 ∈ 𝐽𝐽 ≔ [0, 𝑏𝑏]
𝑥𝑥(𝑡𝑡) =  𝜑𝜑1(𝑡𝑡), 𝑡𝑡 ∈ [−𝑟𝑟, 0]                                                                                    (𝟏𝟏)
𝑦𝑦(𝑡𝑡) =  𝜑𝜑2(𝑡𝑡),                                                                                           𝑡𝑡 ∈ [−𝑟𝑟, 0]

𝑥𝑥(0) =  𝑥𝑥(𝑏𝑏) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑦𝑦(0) = 𝑦𝑦(𝑏𝑏)

 

where the operators Ai, i =  1;  2 are the infinitesimal generator of a C0- 
semigroup Ti(t)t≥0 on a Banach space E. b; r are real numbers with  

b, r>0 . 
 F1 , F2 ∶ J × E ×  E →  𝒫𝒫(E) are multifunctions, and 
𝒯𝒯i ∶  [0, b] ×  C([−r, 0], E) →  [0, r], i =  1;  2 are the given continuous 

functions. 
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For any function 𝑥𝑥 defined on [−r;  b] and any t ∈  J , we denote 
by 𝑥𝑥t the element  of C([−r;  0], E) defined by 

𝑥𝑥t(θ) =  𝑥𝑥(t + θ), θ ∈  [−r, 0]. 
Here, 𝑥𝑥t(∙) represents the history of the state from the time t − r, up to 

the present time  t. 
Throughout this paper, the operators Ai,   i =  1, 2 are the infinitesimal 

generator of a C0 −semigroup Ti(t)t≥0 and there exists M > 0 such that 
‖T(t)‖ ≤ M  for  all t ∈ J. 

𝐶𝐶([−𝑟𝑟, 𝑏𝑏],𝐸𝐸) is the Banach space of all continuous functions from 
[−𝑟𝑟;  𝑏𝑏] into E with the norm 

‖𝑥𝑥‖∞ = 𝑠𝑠𝑠𝑠𝑠𝑠
𝜃𝜃∈[−𝑟𝑟,0]

𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡∈[0,𝑏𝑏]

‖𝑥𝑥(𝑡𝑡 + 𝜃𝜃)‖. 

Set  𝐶𝐶𝑟𝑟: =  𝐶𝐶([−𝑟𝑟, 0],𝐸𝐸) and C ∶=  C([−r, b], E). 
This paper is organized as follows: Section 2 briefy recalls some basic 

definitions and preliminary facts which will be used throughout the 
following sections. 

Section 3 proves the existence of set solutions for a functional 
differential inclusions system with state-dependent delays with periodic 
conditions. 

Preliminaries 
In this section, we introduce notations, definitions, and preliminary 

facts which are used throughout this paper.  
Definition (2.1) (Daoudi, 2018): A square matrix of real numbers is 

said to converge to zero if and only if its spectral radius ρ(M) is strictly less 
than 1. In other words, this means that all the eigenvalues of M are in the 
open unit disc i. e|λ| <  1; for every λ ∈ ℂ with det(M − λI) = 0, where I 
denote the unit matrix of Mn×n(ℝ). 

Multi-valued analysis 
Let (X, d)be a metric space and Y be a subset of X: Denote by 
• 𝒫𝒫(𝑋𝑋) = {𝑌𝑌 ⊂ 𝑋𝑋:𝑌𝑌 ≠ ∅}. 
• 𝒫𝒫p(X) =  {Y ∈𝒫𝒫(X): Y has the property “pˮ} where p could be: 

cl =closed, 
b=bounded, cp =compact, cv =convex, etc. Thus, 
•𝒫𝒫cl(X) =  {Y ∈ 𝒫𝒫(X): 𝑌𝑌 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐} 
•  𝒫𝒫b(X) =  {𝑌𝑌 ∈ 𝒫𝒫(𝑋𝑋):𝑌𝑌 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏}. 
•𝒫𝒫cp(X) = {Y ∈  𝒫𝒫(X): Y compact}. 



 

766 

VO
JN

O
TE

H
N

IČ
KI

 G
LA

SN
IK

 / 
M

IL
IT

AR
Y 

TE
C

H
N

IC
AL

 C
O

U
R

IE
R

, 2
02

5,
 V

ol
. 7

3,
 Is

su
e 

3 • 𝒫𝒫𝑐𝑐𝑐𝑐(𝑋𝑋) = {𝑌𝑌 ∈ 𝒫𝒫(𝑋𝑋): 𝑌𝑌 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}where X is a Banach space. 
• 𝒫𝒫𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐(𝑋𝑋) = 𝒫𝒫𝑐𝑐𝑐𝑐(𝑋𝑋)⋂𝒫𝒫𝑐𝑐𝑐𝑐(𝑋𝑋). 
Let (X, d∗) be a metric space. Denote by Hd∗the Hausdorff pseudo-

metric distance on P(X) defined as 
𝐻𝐻𝑑𝑑∗:𝒫𝒫(𝑋𝑋) × 𝒫𝒫(𝑋𝑋) → ℝ+⋃{∞},𝐻𝐻𝑑𝑑∗(𝐴𝐴,𝐵𝐵)

= 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎∈𝐴𝐴

𝑑𝑑∗(𝑎𝑎,𝐵𝐵), 𝑠𝑠𝑠𝑠𝑠𝑠
𝑏𝑏∈𝐵𝐵

𝑑𝑑∗(𝐴𝐴, 𝑏𝑏),� . 

where d∗(𝐴𝐴, 𝑏𝑏) = 𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎∈𝐴𝐴

𝑑𝑑∗(𝑎𝑎, 𝑏𝑏 ) and 𝑑𝑑∗(𝑎𝑎,𝐵𝐵) = 𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏∈𝐵𝐵

𝑑𝑑∗(𝑎𝑎, 𝑏𝑏). Then 

� 𝒫𝒫𝑏𝑏,𝑐𝑐𝑐𝑐(𝑋𝑋),𝐻𝐻𝑑𝑑∗� is a metric space and � 𝒫𝒫cl(X), Hd∗� is a generalized metric 
space. In particular, Hd∗ satisfies the triangle inequality. 

    Consider the generalized Hausdorff pseudo-metric distance 
Hd:𝒫𝒫(X) × 𝒫𝒫(X) → ℝ+

n⋃{∞} 
defined by 

𝐻𝐻𝑑𝑑(𝐴𝐴,𝐵𝐵) ≔ �
𝐻𝐻𝑑𝑑1(𝐴𝐴,𝐵𝐵)

⋯
𝐻𝐻𝑑𝑑𝑛𝑛(𝐴𝐴,𝐵𝐵)

�. 

Definition 2.2 (Daoudi, 2018): Let (X, d) be a generalized metric 
space, and let 𝑁𝑁:𝑋𝑋 →  𝒫𝒫𝑐𝑐𝑐𝑐(𝑋𝑋) be a multivalued operator. The operator 𝑁𝑁 is 
said to be contractive if there exists a matrix M ∈ ℳ𝑛𝑛×𝑛𝑛(ℝ+) such that 
𝑀𝑀𝑘𝑘 → 0 𝑎𝑎𝑎𝑎 𝑘𝑘 → ∞ 

and 
𝐻𝐻𝑑𝑑�𝑁𝑁(𝑢𝑢),𝑁𝑁(𝑣𝑣)� ≤  𝑀𝑀𝑀𝑀(𝑢𝑢, 𝑣𝑣), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢, 𝑣𝑣 ∈  𝑋𝑋. 

Let   (X, d) and (Y, ρ) be two metric spaces and F: X → 𝒫𝒫(Y ) be a multi-
valued mapping. Then F is said to be lower semi-continuous (l. s. c. ) if the 
inverse image of V by F 

𝐹𝐹−1(𝑉𝑉 ) = {𝑥𝑥 ∈ 𝑋𝑋:𝐹𝐹(𝑥𝑥)⋂𝑉𝑉 ≠ ∅} 
is open for any open set V in Y . Equivalently, F is l.s.c. if the core of 

V by F 
𝐹𝐹+1(𝑉𝑉 ) = {𝑥𝑥 ∈ 𝑋𝑋:𝐹𝐹(𝑥𝑥) ⊂ 𝑉𝑉 } 

is closed for any closed set V in Y . 
Likewise, the map F is called upper semi-continuous(u. s. c. ) on X if 

for each 𝑥𝑥0 ∈  X the set F(𝑥𝑥0) is a nonempty, closed subset of X, and if for 
each open set N of Y containing F(x0), there exists an open neighborhood 
M of 𝑥𝑥0 such that F(M) ⊆ Y. That is, if the set F−1(V ) is closed for any 
closed set V in Y. Equivalently, F is u. s. c. if the set F+1(V )is open for any 
open set V in Y . 
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The mapping F is said to be completely continuous if it is u. s. c. and, 
for every bounded subset A ⊆ X, F(A) is relatively compact, i.e., there 
exists a relatively compact set K = K(A) ⊂ X such that 

𝐹𝐹(𝐴𝐴) = �{𝐹𝐹(𝑥𝑥): 𝑥𝑥 ∈ 𝐴𝐴} ⊂ 𝐾𝐾. 

Also, F is compact if F(X) is relatively compact, and it is called locally 
compact if for each 𝑥𝑥 ∈ X, there exists an open set U containing 𝑥𝑥 such that 
F(U) is relatively compact. 

We denote the graph of F to be the set 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ(𝐹𝐹) = {(𝑥𝑥,𝑦𝑦) ∈ 𝑋𝑋 × 𝑌𝑌,𝑦𝑦 ∈ 𝐹𝐹(𝑥𝑥 )} , and we recall the following 

facts. 
Definition 2.3 (Daoudi, 2018): A multivalued map 𝐹𝐹: [𝑎𝑎, 𝑏𝑏] → 𝒫𝒫(𝑌𝑌 ) is 

said to be measurable if for every open 𝑈𝑈 ⊂ 𝑌𝑌; the set 
F+−1(U) = {𝑥𝑥 ∈ Y: F(𝑥𝑥) ⊂ U} is Lebesgue measurable. 
Definition 2.4 (Djebali et al, 2010): A multi-map F is called a 

Carathéodory function if 
(a) the multi-map 𝑡𝑡 → 𝐹𝐹(𝑡𝑡, 𝑥𝑥) is measurable for each 𝑥𝑥 ∈ X; 
(b) for a.e.  t ∈ J, the map 𝑥𝑥 → F(t, 𝑥𝑥) is upper semi-continuous. 
Furthermore, F is L1-Carathéodory if it is further locally integrably 

bounded, i.e., for each positive r, there exists hr ∈  L1(J,ℝ+) such that 
‖(t, 𝑥𝑥)‖𝒫𝒫  ≤  hr(t), for a. e. t ∈  J and all  |𝑥𝑥| ≤  r. 

Lemma 2.5 (Hale, 1977) : The multivalued map 𝐹𝐹: [𝑎𝑎, 𝑏𝑏] → 𝑃𝑃𝑐𝑐𝑐𝑐(𝑌𝑌 ) is 
measurable if and only if for each  𝑥𝑥 ∈ Y , the function 𝜁𝜁: [𝑎𝑎, 𝑏𝑏] → [0, +∞) 
defined by 

𝜁𝜁(𝑡𝑡) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑥𝑥,𝐹𝐹(𝑡𝑡)� = 𝑖𝑖𝑖𝑖𝑖𝑖{‖𝑥𝑥 − 𝑦𝑦‖:𝑦𝑦 ∈ 𝐹𝐹(𝑡𝑡)}, 𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏], is Lebesgue 
measurable. 

The following two lemmas are needed. The first one is the celebrated 
Kuratowski-Ryll-Nardzewski selection theorem. 

Lemma 2.6 (Daoudi, 2018): Let Y be a separable metric space and 
𝐹𝐹: [𝑎𝑎, 𝑏𝑏] → 𝒫𝒫(𝑌𝑌) a measurable multi-valued map with nonempty closed 
values. Then F has a measurable selection. 

Lemma 2.7 (Daoudi, 2018): Let I be a compact interval and E be a 
Banach space. Let F be an L1-Carathéodory multi-valued map with SF,y ≠
∅ , and let Γ be a linear continuous mapping from L1(I, E) to C(I, E). Then, 
the operator 

𝛤𝛤𝛤𝛤𝑆𝑆𝐹𝐹:𝐶𝐶(𝐼𝐼,𝐸𝐸) →  𝒫𝒫𝑐𝑐𝑐𝑐,𝑐𝑐(𝐸𝐸), 𝑦𝑦 →  (𝛤𝛤𝛤𝛤𝑆𝑆𝐹𝐹)(𝑦𝑦) = 𝛤𝛤�𝑆𝑆𝐹𝐹,𝑦𝑦�, 
is a closed graph operator in C(I, E) × C(I, E), where SF,y is known as 

the selectors set from F and given by 
𝑓𝑓 ∈ 𝑆𝑆𝐹𝐹,𝑦𝑦 = � 𝑓𝑓 ∈  𝐿𝐿1(𝐼𝐼,𝐸𝐸):𝑓𝑓(𝑡𝑡) ∈ 𝐹𝐹�𝑡𝑡,𝑦𝑦(𝑡𝑡)� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎. 𝑒𝑒. 𝑡𝑡 ∈  𝐼𝐼�. 
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3 Lemma 2.8 (Daoudi, 2018): Let 𝐼𝐼 be a compact interval and E be a 
Banach space. Let F be an L1-Carathéodory multi-valued map with SF,y ≠
∅, and let Γ be a linear continuous mapping from L1(I, E) to C(I, E). Then, 
the operator 

𝛤𝛤𝛤𝛤𝑆𝑆𝐹𝐹: 𝐶𝐶(𝐼𝐼,𝐸𝐸) → 𝒫𝒫𝑐𝑐𝑐𝑐,𝑐𝑐(𝐸𝐸),𝑦𝑦 →  (𝛤𝛤𝛤𝛤𝑆𝑆𝐹𝐹)(𝑦𝑦) =  𝛤𝛤�𝑆𝑆𝐹𝐹,𝑦𝑦�, 
is a closed graph operator in C(I, E) ×  C(I, E), where SF,y is known as 

the selectors set from F and given by 
𝑓𝑓 ∈ 𝑆𝑆𝐹𝐹,𝑦𝑦 =  �𝑓𝑓 ∈  𝐿𝐿1(𝐼𝐼,𝐸𝐸): 𝑓𝑓(𝑡𝑡) ∈  𝐹𝐹�𝑡𝑡,𝑦𝑦(𝑡𝑡)� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎. 𝑒𝑒. 𝑡𝑡 ∈  𝐼𝐼�. 

Lemma 2.9 (Aubin & Frankowska, 1990): If 𝐺𝐺:𝑋𝑋 → 𝒫𝒫𝑐𝑐𝑐𝑐is u. s. c, then 
for any lim

x→x0
supG(𝑥𝑥) = G(𝑥𝑥0). 

Lemma 2.10 (Aubin & Frankowska, 1990): Let (𝑘𝑘𝑛𝑛)𝑛𝑛∈ℕ ⊂ 𝑘𝑘 ⊂  𝑋𝑋 be a 
sequence of subsets where K is compact in the separable Banach space 
X. Then 

co � lim
n→∞

supkn� = � co�� kn
n≥N

� ,
N>0

 

where coA refers to the closure of the convex hull of A. 
Lemma 2.11 (Aubin & Frankowska, 1990): Every semi-compact 

sequence 𝐿𝐿1([0;  𝑏𝑏],𝐸𝐸) is weakly compact in 𝐿𝐿1([0;  𝑏𝑏], ;𝐸𝐸). 
Lemma 2.12 (Djebali et al 2010): Let E be a normed space and 

𝑥𝑥𝑘𝑘𝑘𝑘∈ℕ ⊂ 𝐸𝐸 be a sequence weakly converging to a limit 𝑥𝑥 ∈ 𝐸𝐸. Then there 
exists a sequence of convex combinations ym = ∑ αmk𝑥𝑥kk=m

k=1  with αmk > 0 
for k = 1,2, … , m and ym = ∑ αmk = 1k=m

k=1 , which converges strongly to 𝑥𝑥. 
Theorem 2.13 (Sinacer et al, 2016): Let (X; d) be a complete 

generalized metric space and F: X →  𝒫𝒫cl,b(X) a contractive multivalued 
operator with the Lipschitz matrix M. Then N has a unique fixed point. 

Theorem 2.14 (Wu, 1996): Let (X, d) be a complete generalized metric 
space and F: X →  𝒫𝒫cl(X)  be a multivalued map. Assume that there exist 
𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ ℳ𝑛𝑛×𝑛𝑛(ℝ+) such that 
𝐻𝐻𝑑𝑑�𝐹𝐹(𝑥𝑥),𝐹𝐹(𝑦𝑦)� ≤ 𝐴𝐴𝐴𝐴(𝑥𝑥,𝑦𝑦) +  𝐵𝐵𝐵𝐵�𝑦𝑦,𝐹𝐹(𝑥𝑥)� +  𝐶𝐶𝐶𝐶�𝑥𝑥,𝐹𝐹(𝑥𝑥)�, 

where A + C converge to zero. Then there exists x ∈ X such that 𝑥𝑥 ∈
F(x). 
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Existence results 
In this section, we assume that 1∈ ρ(T(b)) and  give our main 

existence and uniqueness result for problem (1). Before starting and 
proving this result, we give the definition of its mild solution. 

Definition 3.1 See details in (Djebali et al 2010). 
A function (𝑥𝑥, y) ∈ C × C is said to be a mild solution of problem (1) if 

𝑥𝑥(𝑡𝑡) =  𝜑𝜑1(𝑡𝑡), 𝑦𝑦(𝑡𝑡) =  𝜑𝜑2(𝑡𝑡), 𝑡𝑡 ∈ [−𝑟𝑟, 0]  and if there exists v1, v 2 ∈ L1(J, E) 
such that 

𝑣𝑣𝑖𝑖 ∈ 𝐹𝐹𝑖𝑖 �𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡, 𝑦𝑦𝑡𝑡)�� a.e. on J such that 

𝑥𝑥(𝑡𝑡) = 𝑇𝑇1(𝑡𝑡)(𝐼𝐼 − 𝑇𝑇1(𝑏𝑏))−1 � 𝑇𝑇1(𝑏𝑏 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)
𝑏𝑏

0
𝑑𝑑𝑑𝑑 + � 𝑇𝑇1(𝑡𝑡 − 𝑠𝑠)

𝑡𝑡

0
𝑣𝑣1𝑑𝑑𝑑𝑑, 

𝑦𝑦(𝑡𝑡) = 𝑇𝑇2(𝑡𝑡)(𝐼𝐼 − 𝑇𝑇2(𝑏𝑏))−1 � 𝑇𝑇2(𝑏𝑏 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)
𝑏𝑏

0
𝑑𝑑𝑑𝑑 + � 𝑇𝑇2(𝑡𝑡 − 𝑠𝑠)

𝑡𝑡

0
𝑣𝑣2𝑑𝑑𝑑𝑑, 

𝑥𝑥0 = 𝑥𝑥 b and  𝑦𝑦0 = 𝑦𝑦𝑏𝑏. 
Assume that the following conditions: 
(𝑮𝑮𝟏𝟏)  𝐹𝐹𝑖𝑖 ∶  𝐽𝐽 × 𝐸𝐸 × 𝐸𝐸 → 𝑃𝑃𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐(𝐸𝐸); 𝑡𝑡 ↦ 𝐹𝐹𝑖𝑖(𝑡𝑡,𝑢𝑢, 𝑣𝑣);  𝑖𝑖 = 1,2 are measurable 

for each 𝑡𝑡 ∈ 𝐽𝐽 and 𝑢𝑢, 𝑣𝑣 ∈ 𝐶𝐶. 
(𝐆𝐆𝟐𝟐) There exist functions 𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑖𝑖 ∈ 𝐿𝐿1(𝐽𝐽,ℝ) → ℝ+, 𝑖𝑖 = 1,2 such that 
𝐻𝐻𝑑𝑑�𝐹𝐹𝑖𝑖(𝑡𝑡,𝑢𝑢, 𝑣𝑣) − 𝐹𝐹𝑖𝑖(𝑡𝑡,𝑢𝑢� , 𝑣𝑣�)� ≤ 𝑙𝑙𝑖𝑖(𝑡𝑡)‖𝑢𝑢 − 𝑢𝑢�‖ + 𝑙𝑙𝚤𝚤�(𝑡𝑡)‖𝑣𝑣 − 𝑣𝑣�‖ for every 
 𝑡𝑡 ∈  𝐽𝐽,𝑢𝑢,𝑢𝑢�  , 𝑣𝑣, 𝑣𝑣� ∈ 𝐸𝐸   and 

𝐻𝐻𝑑𝑑�0,𝐹𝐹𝑖𝑖(𝑡𝑡, 0,0)� ≤ 𝑙𝑙𝑖𝑖(𝑡𝑡),𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎. 𝑒𝑒. 𝑡𝑡 ∈  𝐽𝐽 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 = 1,2. 
(G3) There exists a constant 𝜌𝜌𝑖𝑖  ≥  0, 𝑖𝑖 =  1;  2 such that 

‖𝜏𝜏𝑖𝑖(𝑡𝑡,𝑢𝑢)  −  𝜏𝜏𝑖𝑖(𝑡𝑡,𝑢𝑢�)‖)  ≤  𝜌𝜌𝑖𝑖‖𝑢𝑢 −  𝑢𝑢�‖ 
for all 𝑢𝑢;  𝑢𝑢� ∈   𝐸𝐸 and  𝑡𝑡 ∈ 𝐽𝐽. 
(G4) There exists a constant ki ≥  0, i =  1;  2 such that 

𝐻𝐻𝑑𝑑(𝐹𝐹𝑖𝑖(𝑡𝑡;  𝑢𝑢(𝑠𝑠1);  𝑣𝑣(𝑠𝑠1)  −  𝐹𝐹𝑖𝑖(𝑡𝑡;  𝑢𝑢(𝑠𝑠2);  𝑣𝑣(𝑠𝑠1))  ≤  𝑘𝑘1|𝑠𝑠1 −  𝑠𝑠2| +  𝑘𝑘2|𝑠𝑠1 −  𝑠𝑠2|, 
for every 𝑡𝑡 ∈  𝐽𝐽,  𝑠𝑠1;  𝑠𝑠2 ∈ [−𝑟𝑟;  𝑏𝑏] and 𝑢𝑢;  𝑣𝑣 ∈  𝐸𝐸. 
Theorem (3.2): Assume that (G1) , (G2) , (G3) and (G4) are satisfied 

and the matrix 

𝑀𝑀  =  �
𝑀𝑀2

‖𝐼𝐼 − 𝑇𝑇(𝑏𝑏)‖∞
+ 𝑀𝑀��

𝑘𝑘1𝜌𝜌1 + ‖𝑙𝑙1‖𝐿𝐿1 𝑘𝑘�1𝜌𝜌2 + �𝑙𝑙1�𝐿𝐿1
𝑘𝑘2𝜌𝜌1 + ‖𝑙𝑙2‖𝐿𝐿1 𝑘𝑘�2𝜌𝜌2 + �𝑙𝑙2�𝐿𝐿1

� 

converges to zero; then problem (1) has a unique  mild solution. 
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3 Proof: Consider the operator 𝑁𝑁:𝐶𝐶 × 𝐶𝐶 → 𝑃𝑃(𝐶𝐶 × 𝐶𝐶) defined for (𝑥𝑥,𝑦𝑦) ∈
𝐶𝐶 × 𝐶𝐶 by 

𝑁𝑁(𝑥𝑥;  𝑦𝑦) = 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

(ℎ1,ℎ2) ∈ 𝐶𝐶 × 𝐶𝐶: �ℎ1
(𝑡𝑡)

ℎ2(𝑡𝑡)�

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝑇𝑇1(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇1(𝑏𝑏)�−1 � 𝑇𝑇1(𝑏𝑏 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑏𝑏

0

+� 𝑇𝑇1(𝑡𝑡 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0

𝑇𝑇2(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇2(𝑏𝑏)�−1 � 𝑇𝑇2(𝑏𝑏 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑏𝑏

0

+� 𝑇𝑇2(𝑡𝑡 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡

∈ [0, 𝑏𝑏]

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

and  ℎ1(𝑡𝑡) =  𝜑𝜑1(𝑡𝑡); ℎ2(𝑡𝑡) =  𝜑𝜑2(𝑡𝑡) for 𝑡𝑡 ∈  [−𝑟𝑟;  0], where  

  𝑣𝑣𝑖𝑖 ∈ 𝑆𝑆𝐹𝐹𝑖𝑖,𝑥𝑥,𝑦𝑦 = �𝑓𝑓 ∈  𝐿𝐿1(𝐽𝐽,𝐸𝐸):𝑓𝑓(𝑡𝑡)

∈ 𝐹𝐹𝑖𝑖 �𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� ,𝑎𝑎. 𝑒𝑒.  𝑡𝑡 ∈ 𝐽𝐽�. 

Clearly, the fixed points of the operator 𝑁𝑁 are the solutions of problem 
(1). Let 
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𝑁𝑁1(𝑥𝑥,𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧
ℎ1 ∈ 𝐶𝐶:ℎ1(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧𝑇𝑇1(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇1(𝑏𝑏)�−1� 𝑇𝑇1(𝑏𝑏 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑏𝑏

0

+� 𝑇𝑇1(𝑡𝑡 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
,   𝑡𝑡 ∈ 𝐽𝐽 ≔ [0, 𝑏𝑏]

⎭
⎪
⎬

⎪
⎫

 

and 

N2(𝑥𝑥,𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧
ℎ2 ∈ 𝐶𝐶: ℎ2(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧𝑇𝑇2(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇2(𝑏𝑏)�−1 � 𝑇𝑇2(𝑏𝑏 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑏𝑏

0

+� 𝑇𝑇2(𝑡𝑡 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
,   𝑡𝑡 ∈ 𝐽𝐽 ≔ [0, 𝑏𝑏]

⎭
⎪
⎬

⎪
⎫

. 

Hence, 
𝑁𝑁(𝑥𝑥,𝑦𝑦) = �𝑁𝑁1(𝑥𝑥,𝑦𝑦),𝑁𝑁2(𝑥𝑥,𝑦𝑦)�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (𝑥𝑥, 𝑦𝑦) ∈ 𝐶𝐶 × 𝐶𝐶. 

Since for each (𝑥𝑥, y) ∈ C × C, the nonlinearity Fi takes convex values, 
the selection set SFi,x,y is convex, then N has convex values. We show that 
N satisfies the assumptions of Theorem 2.13.  

Let (x, y), (x�, y�) ∈ C2 × C2and (h1, h2) ∈ N(x, y). Then there exists vi ∈
Fi �t, x�t − τ1(t, xt)�, y�t − τ2(t, yt)�� , i = 1,2 such that 

�ℎ1
(𝑡𝑡)

ℎ2(𝑡𝑡)� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝑇𝑇1(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇1(𝑏𝑏)�−1� 𝑇𝑇1(𝑏𝑏 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑏𝑏

0

+� 𝑇𝑇1(𝑡𝑡 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0

𝑇𝑇2(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇2(𝑏𝑏)�−1� 𝑇𝑇2(𝑏𝑏 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑏𝑏

0

+� 𝑇𝑇2(𝑡𝑡 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ [0, 𝑏𝑏] 

(G2) implies that 
𝐻𝐻𝑑𝑑1�𝐹𝐹1(𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))�

− 𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥�𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦�𝑡𝑡)))� ≤ 
𝐻𝐻𝑑𝑑1�𝐹𝐹1(𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))�

− 𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥�𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦�𝑡𝑡)))� + 
𝐻𝐻𝑑𝑑1�𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))�

− 𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥�𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦�𝑡𝑡)))� ≤ 
𝑙𝑙1(𝑡𝑡)��𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥�𝑡𝑡)��+ 𝑘𝑘1‖𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)− 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)‖�+ 
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3 𝑙𝑙1̅(𝑡𝑡)��𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1‖𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡) − 𝜏𝜏2(𝑡𝑡,𝑦𝑦�𝑡𝑡)‖� ≤ 
𝑙𝑙1(𝑡𝑡)��𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)��+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥�𝑡𝑡‖� + 
𝑙𝑙1̅(𝑡𝑡)��𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡� ‖� , 𝑡𝑡 ∈  𝐽𝐽 

and 
𝐻𝐻𝑑𝑑2�𝐹𝐹1(𝑡𝑡, 𝑥𝑥 �𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡, 𝑦𝑦𝑡𝑡))�

− 𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥�𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦�𝑡𝑡)))� ≤ 
𝐻𝐻𝑑𝑑2�𝐹𝐹1(𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))�

− 𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)))� + 
𝐻𝐻𝑑𝑑2�𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))�

− 𝐹𝐹1(𝑡𝑡, 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥�𝑡𝑡)�,𝑦𝑦�(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦�𝑡𝑡)))� ≤ 
𝑙𝑙2(𝑡𝑡)��𝑥𝑥𝑡𝑡�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥�𝑡𝑡�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)��+ 𝑘𝑘1‖𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)− 𝜏𝜏1(𝑡𝑡, 𝑥𝑥�𝑡𝑡)‖� + 
𝑙𝑙2̅(𝑡𝑡)��𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡, 𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1‖𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡) − 𝜏𝜏2(𝑡𝑡,𝑦𝑦�𝑡𝑡)‖� ≤ 

𝑙𝑙2(𝑡𝑡)��𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)��+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥� ‖� + 

𝑙𝑙2(𝑡𝑡)��𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)��+ 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦�‖�, 𝑡𝑡 ∈ 𝐽𝐽. 
Hence, there is some 

(𝑤𝑤,𝑤𝑤�) ∈  𝐹𝐹1(𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))) × 𝐹𝐹2(𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡
− 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))) 

such that for each 𝑡𝑡 ∈ 𝐽𝐽 
‖𝑣𝑣1(𝑡𝑡) −𝑤𝑤‖ ≤ 𝑙𝑙1(𝑡𝑡)��𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)��+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥�‖�

+ 
𝑙𝑙1(𝑡𝑡)��𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡� ‖� 

and 
‖𝑣𝑣2(𝑡𝑡) −𝑤𝑤‖ ≤ 𝑙𝑙2(𝑡𝑡)�𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)��+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥�𝑡𝑡‖ 

             +𝑙𝑙2(𝑡𝑡)�𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡‖�. 
Consider the multi-valued maps ⋃ : 𝐽𝐽𝑖𝑖 → ℝ, 𝑖𝑖 =  1;  2 defined by 

𝑈𝑈1(𝑡𝑡) = �𝑓𝑓 ∈ 𝐹𝐹1(𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))): 
‖𝑣𝑣1(𝑡𝑡)−𝑤𝑤‖ ≤ 𝑙𝑙1(𝑡𝑡)�𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�� + 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡‖ 

             +𝑙𝑙1(𝑡𝑡)�𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡‖� 
and 

𝑈𝑈2(𝑡𝑡) = �𝑓𝑓 ∈ 𝐹𝐹2(𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦(𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡))): 
‖𝑣𝑣2(𝑡𝑡)−𝑤𝑤‖ ≤ 𝑙𝑙2(𝑡𝑡)�𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)��+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥�𝑡𝑡‖ 
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             +𝑙𝑙2(𝑡𝑡)�𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡‖�. 
Then Ui(t) is a nonempty set and Theorem III,4.1 in (Daoudi, 2018) 

tells us that Ui is measurable. Moreover, the multi-valued intersection 
operator 𝑉𝑉𝑖𝑖(∙) = 𝑈𝑈𝑖𝑖(∙)⋂𝐹𝐹𝑖𝑖 �∙,𝑥𝑥�∙ −𝜏𝜏1(∙,𝑥𝑥)�,𝑦𝑦�∙ −𝜏𝜏2(∙,𝑦𝑦)�� is measurable. 
Therefore, by Lemma 2.6, there exists a function t → v�i, which is a 
measurable selection for Vi, that is  

𝑣𝑣�𝑖𝑖 ∈ 𝐹𝐹𝑖𝑖 �𝑡𝑡, 𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)�,𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡, 𝑦𝑦𝑡𝑡)�� and 

‖𝑣𝑣1(𝑡𝑡) − 𝑣𝑣�1(𝑡𝑡)‖ ≤ 𝑙𝑙1(𝑡𝑡)�𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)��+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥�𝑡𝑡‖ 

             +𝑙𝑙1(𝑡𝑡)�𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡‖� 
and 

‖𝑣𝑣2(𝑡𝑡) − 𝑣𝑣�2(𝑡𝑡)‖ ≤ 𝑙𝑙2(𝑡𝑡)�𝑥𝑥�𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥𝑡𝑡)� − 𝑥𝑥��𝑡𝑡 − 𝜏𝜏1(𝑡𝑡, 𝑥𝑥)�� + 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑡𝑡 − 𝑥𝑥�𝑡𝑡‖ 

             +𝑙𝑙2(𝑡𝑡)�𝑦𝑦�𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)� − 𝑦𝑦��𝑡𝑡 − 𝜏𝜏2(𝑡𝑡,𝑦𝑦𝑡𝑡)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡‖�. 
Define  ℎ�1,ℎ�2 by 

ℎ�1(𝑡𝑡) = 𝑇𝑇1(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇1(𝑏𝑏)�−1 � 𝑇𝑇1(𝑏𝑏 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑏𝑏

0
+� 𝑇𝑇1(𝑡𝑡 − 𝑠𝑠)𝑣𝑣1(𝑠𝑠)𝑑𝑑𝑑𝑑,

𝑡𝑡

0
𝑡𝑡 ∈ 𝐽𝐽 

and 

ℎ�2(𝑡𝑡) = 𝑇𝑇2(𝑡𝑡)�𝐼𝐼 − 𝑇𝑇2(𝑏𝑏)�−1 � 𝑇𝑇2(𝑏𝑏 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑 + � 𝑇𝑇2(𝑡𝑡 − 𝑠𝑠)𝑣𝑣2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
, 𝑡𝑡

𝑏𝑏

0
∈ 𝐽𝐽. 

Then for 𝑡𝑡 ∈ 𝐽𝐽, there is 
�ℎ1(𝑡𝑡)− ℎ�1(𝑡𝑡)�

≤
𝑀𝑀2

‖𝐼𝐼 − 𝑇𝑇(𝑏𝑏)‖�� 𝑙𝑙1(𝑠𝑠)�𝑥𝑥�𝑠𝑠 − 𝜏𝜏1(𝑠𝑠, 𝑥𝑥𝑠𝑠)� − 𝑥𝑥��𝑠𝑠 − 𝜏𝜏1(𝑠𝑠, 𝑥𝑥𝑠𝑠)��
𝑏𝑏

0
+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑠𝑠 − 𝑥𝑥�𝑠𝑠‖ +𝑙𝑙1(𝑠𝑠)�𝑦𝑦�𝑠𝑠 − 𝜏𝜏1(𝑠𝑠,𝑦𝑦𝑠𝑠)� − 𝑦𝑦��𝑠𝑠 − 𝜏𝜏2(𝑠𝑠,𝑦𝑦𝑠𝑠)��
+ 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑠𝑠 − 𝑦𝑦�𝑠𝑠‖� 𝑑𝑑𝑑𝑑 

+𝑀𝑀�∫ 𝑙𝑙1(𝑠𝑠)�𝑥𝑥�𝑠𝑠 − 𝜏𝜏1(𝑠𝑠, 𝑥𝑥𝑠𝑠)� − 𝑥𝑥��𝑠𝑠 − 𝜏𝜏1(𝑠𝑠, 𝑥𝑥𝑠𝑠)�� +𝑡𝑡
0 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑠𝑠 −

𝑥𝑥�𝑠𝑠‖ +𝑙𝑙1(𝑠𝑠)�𝑦𝑦�𝑠𝑠 − 𝜏𝜏2(𝑠𝑠,𝑦𝑦𝑠𝑠)� − 𝑦𝑦��𝑠𝑠 − 𝜏𝜏2(𝑠𝑠,𝑦𝑦𝑠𝑠)�� + 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑠𝑠 − 𝑦𝑦�𝑠𝑠‖� 𝑑𝑑𝑑𝑑 
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3 

≤ �
𝑀𝑀2

‖1− 𝑇𝑇(𝑏𝑏)‖+ 𝑀𝑀��� 𝑙𝑙1(𝑠𝑠)�𝑥𝑥�𝑠𝑠 − 𝜏𝜏1(𝑠𝑠, 𝑥𝑥𝑠𝑠)� − 𝑥𝑥��𝑠𝑠 − 𝜏𝜏1(𝑠𝑠, 𝑥𝑥𝑠𝑠)��
𝑏𝑏

0
+ 𝑘𝑘1𝜌𝜌1‖𝑥𝑥𝑠𝑠 − 𝑥𝑥�𝑠𝑠‖ +𝑙𝑙1(𝑠𝑠)�𝑦𝑦�𝑠𝑠 − 𝜏𝜏2(𝑠𝑠,𝑦𝑦𝑠𝑠)� − 𝑦𝑦��𝑠𝑠 − 𝜏𝜏2(𝑠𝑠,𝑦𝑦𝑠𝑠)��

+ 𝑘𝑘�1𝜌𝜌2‖𝑦𝑦𝑠𝑠 − 𝑦𝑦�𝑠𝑠‖�𝑑𝑑𝑑𝑑� 

≤ �
𝑀𝑀2

‖1− 𝑇𝑇(𝑏𝑏)‖+ 𝑀𝑀��𝑘𝑘1𝜌𝜌1 + ‖𝑙𝑙1‖𝐿𝐿1 ,𝑘𝑘�1𝜌𝜌2 + �𝑙𝑙1�𝐿𝐿1� (‖𝑥𝑥 − 𝑥𝑥�‖∞, ‖𝑦𝑦 − 𝑦𝑦�‖∞). 

Thus, 

�ℎ1 − ℎ�1�∞ ≤ �
𝑀𝑀2

‖1 − 𝑇𝑇(𝑏𝑏)‖+ 𝑀𝑀��𝑘𝑘1𝜌𝜌1 + ‖𝑙𝑙1‖𝐿𝐿1 ,𝑘𝑘�1𝜌𝜌2

+ �𝑙𝑙1�𝐿𝐿1� (‖𝑥𝑥 − 𝑥𝑥�‖∞,‖𝑦𝑦 − 𝑦𝑦�‖∞). 

By an analogous relation, one finally arrives at the estimate 
𝐻𝐻𝑑𝑑1�𝑁𝑁1(𝑥𝑥,𝑦𝑦),𝑁𝑁1(𝑥𝑥�,𝑦𝑦�)� 

≤ � 𝑀𝑀2

‖1−𝑇𝑇(𝑏𝑏)‖ + 𝑀𝑀��𝑘𝑘1𝜌𝜌1 + ‖𝑙𝑙1‖𝐿𝐿1 ,𝑘𝑘�1𝜌𝜌2 + �𝑙𝑙1�𝐿𝐿1� (‖𝑥𝑥 − 𝑥𝑥‖∞,‖𝑦𝑦 − 𝑦𝑦�‖∞). 

Similarly, there is 
𝐻𝐻𝑑𝑑2�𝑁𝑁2(𝑥𝑥,𝑦𝑦),𝑁𝑁2(𝑥𝑥�,𝑦𝑦�)�

≤ �
𝑀𝑀2

‖1− 𝑇𝑇(𝑏𝑏)‖ + 𝑀𝑀��𝑘𝑘2𝜌𝜌1 + ‖l2‖L1, 𝑘𝑘�2𝜌𝜌2

+ �l2�L2� (‖x − x�‖∞, ‖y − y�‖∞) 
Therefore, 

𝐻𝐻𝑑𝑑�𝑁𝑁(𝑥𝑥,𝑦𝑦),𝑁𝑁(𝑥𝑥�,𝑦𝑦�)� ≤ 𝑀𝑀 �
‖𝑥𝑥 − 𝑥𝑥�‖∞
‖𝑦𝑦 − 𝑦𝑦�‖∞

� ,𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦), (𝑥𝑥�,𝑦𝑦�) ∈ 𝐶𝐶2 × 𝐶𝐶2. 

Thus, by Theorem 2.13, the operator N has a unique fixed point which  
is a unique mild solution to problem (1). 

Conclusion 
This paper, using the recent Perov fixed point theorem technique on 

a Banach space, presents an existence result for a mild solution to a semi-
linear operator system of periodic functional differential inclusions. 

Researchers are encouraged to explore these findings further and 
develop computational and numerical methods to approximate the results, 
providing an alternative approach to advancing the current study. 
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3 CAMPO:  Matemáticas 
TIPO DE ARTÍCULO: artículo científico original 

Resumen: 
Introducción/objetivo:  El estudio abordó la existencia y singularidad de 
soluciones suaves para una clase de sistemas de inclusión diferenciales 
funcionales semilineales periódicos con retardos dependientes del estado. 
Estos sistemas son de creciente interés debido a su amplia gama de 
aplicaciones en teoría de control, sistemas biológicos y modelos de 
ingeniería que involucran retrasos de tiempo e incertidumbres. 
Métodos:  La investigación se realizó en el marco de los espacios de 
Banach. Se aplicó el teorema del punto fijo de Perov, conocido por su 
eficacia en el manejo de sistemas con múltiples componentes, para 
establecer la existencia de soluciones suaves. El enfoque analítico 
incorporó técnicas adecuadas para inclusiones diferenciales y teoría de 
operadores, con especial atención a sistemas influenciados por retardos 
dependientes del estado. 
Resultados:  Se obtuvieron varios resultados relativos a la existencia y 
unicidad de soluciones suaves para el sistema considerado. La aplicación 
del teorema del punto fijo de Perov permitió derivar las condiciones 
suficientes para la existencia de dichas soluciones. Además, se tuvo en 
cuenta la naturaleza periódica del sistema, asegurando que las soluciones 
se ajustaran a la estructura temporal prescrita. 
Conclusión:  Los hallazgos confirmaron que, bajo supuestos específicos, el 
sistema admite al menos una solución moderada. Los resultados 
contribuyeron a la fundamentación teórica de las inclusiones diferenciales 
funcionales con retardos. Se alentó a los investigadores a explorar más a 
fondo estos resultados y a desarrollar métodos computacionales y 
numéricos para aproximar las soluciones teóricas, ampliando así la 
aplicabilidad de la investigación actual. 
Palabras claves:  soluciones suaves, retardos dependientes del estado, 
espacios de Banach, aplicaciones multivaluadas, puntos fijos, 
inclusiones diferenciales funcionales, sistemas semilineales 

Периодическая полулинейная функционально-
дифференциальная система включения с зависящими от 
состояния задержками 
Халифа Даудияаб, корреспондент, Мохамед Белаидиа 

а Университетский центр Нур-Башир-Эль-Баяд, Эль-Баяд, Алжир, 
  Научный институт, Эль-Баяд, Алжир  
б Университет Сиди-Бель-Аббеса, Математическая лаборатория, Алжир, 
   Сиди-Бель-Аббес, Алжир, 
 
РУБРИКА ГРНТИ: 27.01.00 Общие вопросы математики 
ВИД СТАТЬИ: оригинальная научная статья 
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Резюме:  
Введение/цель: В данном исследовании рассматривались 
существование и уникальность мягких решений для класса 
периодических полулинейных систем функционально-
дифференциального включения с задержками, зависящими от 
состояния. Такие системы вызывают большой интерес из-за их 
широкого спектра применения в теории управления, биологических 
системах и инженерных моделях, связанных с временными 
задержками и неопределенностями.  
Методы: Исследование проводилось в рамках банахового 
пространства. Теорема Перова о неподвижной точке, 
отличающаяся эффективностью в работе с многокомпонентными 
системами, была применена для выявления слабых решений. 
Аналитический подход включал методы, подходящие для 
дифференциальных включений и теории операторов, с особым 
упором на системы, подверженным задержкам, зависящим от 
состояния. 
Результаты: В ходе исследования было получено несколько 
результатов, касающихся существования и уникальности слабых 
решений по анализируемой системе. Применение теоремы Перова 
о неподвижной точке помогло выявить условия, при которых такие 
решения могут использоваться. Помимо того, был учтен 
периодический характер системы, что гарантировало 
соответствие решений предписанной временной структуре. 
Выводы: Результаты подтвердили, что при определенных 
обстоятельствах система допускает хотя бы одно мягкое 
решение. Результаты способствовали теоретическому 
обоснованию функционально-дифференциальных включений с 
задержками. Исследователям было предложено продолжить 
изучение полученных результатов и разработать численные 
методы для аппроксимации теоретических решений, тем самым 
расширив применимость данного исследования. 
Ключевые слова: мягкие решения, зависящие от состояния 
задержки, банахово пространство, многозначные отображения, 
неподвижные точки, функционально-дифференциальные 
включения, полулинейные системы. 
 

Периодични семилинеарни функционални систем инклузије са 
кашњењима зависним од стања 
Калифа Даудиаб, аутор за преписку, Мохамед Белаидиа 
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3 ОБЛАСТ: математика 
КАТЕГОРИЈА (ТИП) ЧЛАНКА: оригинални научни рад 

Сажетак: 
Увод/Циљ: У овој студији обрађује се постојање и јединственост 
слабих решења за класу периодичних семилинеарних функционалних 
диференцијалних система инклузије са кашњењима зависним од 
стања. Све је веће интересовање за ове системе због њиховог 
широког спектра примене у теорији управљања, биолошким 
системима, као и инжењерским моделима који укључују временска 
кашњења и неизвесности. 
Методе: Истраживање је спроведено унутар Банахових простора. 
Теорема о фиксној тачки Перова, позната по својој ефикасности 
при раду са вишекомпонентним системима, примењена је како би се 
утврдило постојање слабих решења. Аналитички приступ 
укључивао је технике погодне за диференцијалне инклузије и 
теорију оператора, с посебним фокусом на системе под утицајем 
кашњења зависних од стања.  
Резултати: Добијено је неколико резултата који се односе на 
постојање и јединственост слабих решења за разматрани систем. 
Примена теореме о фиксној тачки Перова омогућила је извођење 
довољних услова под којима таква решења постоје. Штавише, 
узета је у обзир периодична природа система, што је обезбедило да 
се решења придржавају прописане временске структуре. 
Закључак: Налази су потврдили да, под специфичним 
претпоставкама, систем дозвољава најмање једно слабо решење. 
Резултати су допринели теоријској основи функционалних 
диференцијалних инклузија са кашњењима. Истраживачи се 
подстичу да даље испитују ова решења и да развијају рачунарске и 
нумеричке методе за апроксимацију теоријских решења, што би 
омогућило ширу примену овог истраживања. 
Кључне речи: слаба решења, кашњења зависна од стања, 
Банахови простори, вишевредносне мапе, непомичне тачке, 
функционалне диференцијалне инклузије, семилинеарни системи 
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