Diabetes mellitus and obesity as a result of a disrupted homeostatic microbiome. New data on etiopathogenesis of diabetes mellitus

  • Dragan M. Nikolić University of Belgrade, School of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases – Laboratory for Human Pancreatic Islets Culture, Belgrade, Serbia
Keywords: microbiota;, diabetes mellitus;, obesity;, pancreas;, digestive system.

Abstract


The aetiopathology of diabetes is not fully understood. Recent studies have confirmed that microorganisms influence insulin secretion directly in the pancreas and indirectly in the gastrointestinal tract.  In a healthy body, microorganisms are part of the homeostatic microbiome and play a key role in maintaining health, digestion and metabolism. Formation of the homeostatic microbiome takes place in several stages: pregnancy and childbirth, breastfeeding, contact with family and wider environment, nutrition and sexual contacts. Many internal and environmental factors can lead to disorders of homeostatic microbiome, causing disorders of glucose homeostasis. The present document tests the hypothesis that disruption of the homeostatic microbiome play an important role in aetiopathogenesis of diabetes and obesity

References

REFERENCES

International Diabetes mellitus Federation, 2014. Available from: http://www.idf.org/diabetes mellitusatlas

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glu¬cose and lipid metabolism. Nature 2001; 414(6865): 799–806.

Bloomgarden ZT. The 1st World Congress on the Insulin Resis-tance Syndrome. Diabetes Care 2004; 27(2): 602–9.

Nesto RW. The relation of insulin resistance syndromes to risk of cardiovascular disease. Rev Cardiovasc Med 2003; 4 Suppl 6: S11–8.

Scheen AJ. Pathophysiology of type 2 diabetes. Acta Clin Belg 2003; 58(6): 335–41.

Nikolić DM. Effects of bacterial infection on insulin secretory capacity of human adult pancreatic islets. Br J Biomed Sci 2011; 68(4): 181–4.

Nikolic DM. Effects of Candida on insulin secretion of hu-man adult pancreatic islets and possible onset of diabetes. Br J Biomed Sci 2014; 71(2): 73–8.

Slavov E, Georgiev IP, Dzhelebov P, Kanelov I, Andonova M, Mircheva Georgieva T, et al. High-fat feeding and Staphylococ-cus intermedius infection impair beta cell function and insulin sen¬sitivity in mongrel dogs. Vet Res Commun 2010; 34(3): 205–15.

Gloor B, Müller CA, Worni M, Stahel PF, Redaelli C, Uhl W, et al. Pancreatic infection in severe pancreatitis: the role of fun-gus and multiresistant organisms. Arch Surg 2001; 136(5): 592–6.

Chung RT, Schapiro RH, Warshaw AL. Intraluminal pancreatic candidiasis presenting as recurrent pancreatitis. Gastroenterol-ogy 1993; 104(5): 1532–53.

Bonatti H, Steurer W, Konigsrainer A, Allerberger F, Margreiter R. In¬fection of the pancreatic duct following pancreas transplan-tation with bladder drainage. J Chemother 1995; 7(5): 442–5.

McGuinness OP, Donmoyer C, Ejiofor J, McElligott S, Lacy DB. He¬patic and muscle glucose metabolism during total parenter-al nutrition: impact of infection. Am J Physiol 1998; 275(5 Pt 1): E763–9.

Sammalkorpi K. Glucose intolerance in acute infections. J In-tern Med 1989; 225(1): 15–9.

Sugita H, Kaneki M, Tokunaga E, Sugita M, Koike C, Yasuhara S, et al. Inducible nitric oxide synthase plays a role in LPS-in-duced hyperglycemia and insulin resistance. Am J Physiol En-docrinol Metab 2002; 282(2): E386–94.

Hargrove DM, Bagby GJ, Lang CH, Spitzer JJ. Adrenergic block-ade does not abolish elevated glucose turnover during bacteri-al infection. Am J Physiol 1988; 254(1 Pt 1): E16–22.

Walker FR, Owens J, Ali S, Hodgson DM. Individual differ-ences in glucose homeostasis: Do our early life interactions with bacteria matter? Brain Behav Immun 2006; 20(4): 401–9.

Fernández-Real JM, López-Bermejo A, Vendrell J, Ferri MJ, Re-casens M, Ricart, W. Burden of infection and insulin resistance in healthy middle-aged men. Diabetes Care 2006; 29(5): 1058–64.

Devaraj S, Hemarajata, Versalovic J. The human gut microbiome and body metabolism: Implications for obesity and diabetes mellitus. Clin Chem 2013; 59(4): 617–28.

Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut micro-biome. Science 2006; 312(5778): 1355–9.

Candela M, Maccaferri S, Turroni S, Carnevali P & Brigidi P. Func¬tional intestinal microbiome, new frontiers in prebiotic design. Int J Food Microbiol 2010; 140(2–3): 93–101

Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J. Dif-fer¬ential activation of a Candida albicans virulence gene fami-ly during infection. Proc Natl Acad Sci USA 2000; 97(11): 6102–7.

Berman J, Sudbery PE. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 2002; 3(12): 918–30.

Miller LG, Hajjeh RA, Edwards JE Jr. Estimating the cost of nosocomial candidemia in the United States. Clin Infect Dis 2001; 32(7): 1110.

Biswas S, Van Dijck P, Datta A. Environmental sensing and sig¬nal transduction pathways regulating morphopathogenic de-terminants of Candida albicans. Microbiol Mol Biol Rev 2007; 71(2): 348–76.

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262–7.

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262–7.

Louis P. Does the human gut microbiota contribute to the eti-ol¬ogy of autism spectrum disorders? Dig Dis Sci 2012; 57(8): 1987–9.

Helmick CG, Bernard KW, D'Angelo LJ. Rocky Mountain spot-ted fever: clinical, laboratory, and epidemiological features of 262 cases. J Infect Dis 1984; 150(4): 480–8.

Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jo¬bin C. Modulation of the intestinal microbiota alters colitis-as¬sociated colorectal cancer susceptibility. PLoS One 2009; 4(6): e6026.

Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 2012; 7(6): e36466.

Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of moth-er’s weight on infant’s microbiota acquisition, composi¬tion, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 2010; 92(5): 1023–30.

Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differ-ences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008; 87(3): 534–8.

Marik PE. Colonic flora, probiotics, obesity and diabetes melli¬tus. Front Endocrinol (Lausanne) 2012; 3: 87.

Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 2011; 6(6): e21313.

von Kries R, Koletzko B, Sauerwald T, von Mutius E, Barnert D, Grunert V, et al. Breast feeding and obesity: cross sectional study. BMJ 1999; 319(7203): 147–50.

Gillman MW, Rifas-Shiman SL, Camargo CA Jr, Berkey CS, Fra-zier AL, Rockett HR et al. Risk of overweight among adoles-cents who were breastfed as infants. JAMA 2001; 285(19): 2461–7.

Heikkila MP, Saris PE. Inhibition of Streptococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003; 95(3): 471–8.

Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant Q, Fölsch UR, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bow-el disease. Gut 2004; 53(5): 685–93.

Schwebke JR. Abnormal vaginal flora as a biological risk factor for acquisition of HIV infection and sexually transmitted dis-ease. J Infect Dis 2005; 192(8): 1315–7.

Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, et al. Comparisons of subgingival microbial profiles of re-fractory periodontitis, severe periodontitis and periodontal health using the human oral microbe identification microarray. J Periodontol 2009; 80(9): 1421–32.

Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 2009; 67(Suppl 2): S183–91.

Chichlowski M, German JB, Lebrilla CB,Mills DA. The influ-ence of milk oligosaccharides on microbiota of infants: oppor-tuni¬ties for formulas. Annu Rev Food Sci Technol 2011; 2: 331–51.

Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbota. Science 2013; 341(6141): 1237439.

Brotman RM. Vaginal microbiome and sexually transmitted in-fec¬tions: an epidemiologic perspective. J Clin Invest 2011; 121(12): 4610–7.

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101(44): 15718–23.

Serbian Bible. Belgrade: British and Foreign Biblical Society Genesis 1981. 42; 2–3. (Serbian)

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480–4.

Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on en-dothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 2004; 292(12): 1440–6.

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: hu¬man gut microbes associated with obesity. Nature 2006; 444(7122): 1022–3.

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin re-sistance. Diabetes 2007; 56(7): 1761–72.

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rot-tier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven im¬provement of gut permeability. Gut 2009; 58(8): 1091–103.

Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Lec¬cesi L, et al. Bariatric surgery versus conventional medical ther¬apy for type 2 diabetes. N Engl J Med 2012; 366(17): 1577–85.

DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 2008; 83(4): 460–9.

Cani PD, Delzenne NM. The role of the gut microbiota in en-ergy metabolism and metabolic disease. Curr Pharm Des 2009; 15(13): 1546–58.

Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, et al. A gut mi¬crobiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 2014; 87(2): 357–67.

Schrezenmeir J, de Vrese M. Probiotics, prebiotics, and synbiot-ics - approaching a definition. Am J Clin Nutr 2001; 73(2 Suppl): 361S–4S.

Roberfroid MB. Functional foods: concepts and application to inulin and oligofructose. Br J Nutr 2002; 87 Suppl 2: S139–43.

Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125(6): 1401–12.

Nikolic DM. Effects of pancreatic infection on insulin secre-tion and posible onset of diabetes. In Proceedings of the In-ternational Conference on Clinical Microbiology and Microbi-al Genomics; San Antonio USA; 2012 November 12–14. J Mi¬crobial Biochem Technol 2012; 4(5): 39.

Nikolic DM. The Influence of Microorganisms (Microbiom) on Insulin Secretion of Human Pancreatic Islets. New Data on the Etiopathogenesis of Type 2 Diabetes mellitus. Proceedings of the BITs 5th Annual World DNA and Genome Day; 2014 April 25–28. Dalian, China; 2014. p. 130.

Published
2021/01/08
Section
Review Paper