Advances in Cardioprotective Strategies: Bridging Traditional Pharmacotherapy and Regenerative Medicine

Keywords: cardiovascular diseases, cardioprotection, exosomes, cell-based therapy, pharmacological strategies, ischemic injury, regenerative medicine, β-blockers, calcium channel blockers, microvesicles

Abstract


Cardiovascular diseases (CVDs) remain the leading global cause of death and disability, underscoring the need for improved therapies. Key emerging strategies include pharmacological cardioprotection, cell-based therapies and the use of exosomes as therapeutic agents and biomarkers. Aim of this study was to characterise contemporary approaches to cardioprotection in CVDs, including pharmacological agents, cell-based therapies and exosome-based strategies, based on an analysis of evidence-based data. A systematic literature search was performed using databases including PubMed, Clinical Key (Elsevier), Cochrane Library, eBook Business Collection and Google Scholar. Keywords included cardioprotection, exosomes, cell-based therapies and pharmacological approaches. Article selection followed evidence-based medicine principles and the PRISMA guidelines. Current cardioprotective strategies include both traditional pharmacological agents, such as β-blockers, calcium channel blockers, ACE inhibitors, statins and nitrates, as well as innovative approaches like cell-based therapies and the use of exosomes. The advantages and limitations of cell therapy were analysed, including challenges related to low cell survival, failure of differentiation and the risk of arrhythmias. The role of exosomes and microvesicles as promising markers of cardiovascular injury and potential therapeutic agents was also explored. Combining pharmacological, cell-based and exosome-based strategies offers new prospects for cardioprotection in CVDs. Further research is required to optimise the clinical use of cell therapies and to confirm the efficacy of exosome-based interventions.

 

References

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al; Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol. 2020;76(25):2982–3021. doi: 10.1016/j.jacc.2020.11.010.

Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, et al. The role of stem cells in the treatment of cardiovascular diseases. Int J Mol Sci. 2024 Mar 31;25(7):3901. doi: 10.3390/ijms25073901.

United Nations, Department of Economic and Social Affairs, Population Division. World population ageing 2019: highlights. ST/ESA/SER.A/430. [Internet]. New York: United Nations; 2019 [Cited:30-Apr-2025]. Available from: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf.

Gandhi RS, Raman B. The complexity of cardiovascular long COVID: where we are. Cardiovasc Res. 2024 Jul 2;120(8):e30–e32. doi: 10.1093/cvr/cvae090.

Liao R, Li Z, Wang Q, Lin H, Sun H. Revascularization of chronic total occlusion coronary artery and cardiac regeneration. Front Cardiovasc Med. 2022 Aug 25;9:940808. doi: 10.3389/fcvm.2022.940808.

Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al; ESC Scientific Document Group. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020 Jan 14;41(3):407–477. doi: 10.1093/eurheartj/ehz425. Erratum in: Eur Heart J. 2020 Nov 21;41(44):4242. doi: 10.1093/eurheartj/ehz825.

Doenst T, Thiele H, Haasenritter J, Wahlers T, Massberg S, Haverich A. The treatment of coronary artery disease. Dtsch Arztebl Int. 2022 Oct 21;119(42):716–23. doi: 10.3238/arztebl.m2022.0277.

Chernykh VP, editor. Pharmaceutical encyclopedia. 3rd ed., revised and expanded. Kyiv: MORION; 2016. 1761 p.

Kozlov IA. Pharmacological cardiac protection: what is new? Mess Anesth Resuscit. 2019;16(2):57-66. doi: 10.21292/2078-5658-2019-16-2-57-66.

Kawai A, Nagatomo Y, Yukino-Iwashita M, Nakazawa R, Taruoka A, Yumita Y, et al. β1 Adrenergic receptor autoantibodies and igg subclasses: current status and unsolved issues. J Cardiov Devel Disease. 2023;10(9):390. doi: 10.3390/jcdd10090390.

Sinagra G, Corrà U, Contini M, Magrì D, Paolillo S, Perrone Filardi P, et al. Choosing among β-blockers in heart failure patients according to β-receptors' location and functions in the cardiopulmonary system. Pharmacol Res. 2020 Jun;156:104785. doi: 10.1016/j.phrs.2020.104785.

Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery: Developed by the task force for cardiovascular assessment and management of patients undergoing non-cardiac surgery of the European Society of Cardiology (ESC) Endorsed by the European Society of Anaesthesiology and Intensive Care (ESAIC). Eur Heart J. 2022;43(39):3826-924. doi: 10.1093/eurheartj/ehac270.

Padhani ZA, Gangwani MK, Sadaf A, Hasan B, Colan S, Alvi N, et al. Calcium channel blockers for preventing cardiomyopathy due to iron overload in people with transfusion-dependent beta thalassaemia. Cochrane Database Syst Rev. 2023 Nov 17;11(11):CD011626. doi: 10.1002/14651858.CD011626.pub3.

Jæger KH, Charwat V, Wall S, Healy KE, Tveito A. Do calcium channel blockers applied to cardiomyocytes cause increased channel expression resulting in reduced efficacy? NPJ Syst Biol Appl. 2024 Mar 1;10(1):22. doi: 10.1038/s41540-024-00347-3.

Bhullar SK, Dhalla NS. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells. 2022 Oct 22;11(21):3336. doi: 10.3390/cells11213336.

Wong CK, Lau YM, Lai WH, Zhang RR, Luk HK, Wong AC, et al. Angiotensin converting enzyme and sodium glucose cotransporter inhibitors alleviate inflammatory effects of SARS-CoV-2 in cardiomyocytes. Cardiol J. 2022;29(4):702-6. doi: 10.5603/CJ.a2022.0033.

Zhang L, Zhang B, Yu Y, Wang J, Wu J, Su Y, et al J. Angiotensin II increases HMGB1 expression in the myocardium through AT1 and AT2 receptors when under pressure overload. Int Heart J. 2021 Jan 30;62(1):162-70. doi: 10.1536/ihj.20-384.

Reis T, Ronco F, Ostermann M. Diuretics and ultrafiltration in heart failure. Cardiorenal Med. 2023;13(1):56-65. doi: 10.1159/000529068..

Tomasoni D, Vishram-Nielsen JKK, Pagnesi M, Adamo M, Lombardi CM, Gustafsson F, et al. Advanced heart failure: guideline-directed medical therapy, diuretics, inotropes and palliative care. ESC Heart Fail. 2022 Jun;9(3):1507-23. doi: 10.1002/ehf2.13859.

Kim HJ, Jo SH, Lee MH, Seo WW, Kim HL, Lee KY, et al. Nitrates vs. other types of vasodilators and clinical outcomes in patients with vasospastic angina: a propensity score-matched analysis. J Clin Med. 2022 Jun 7;11(12):3250. doi: 10.3390/jcm11123250.

Zhu D, Hou J, Qian M, Jin D, Hao T, Pan Y, et al. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery. Nat Commun. 2021 Jul 23;12(1):4501. doi: 10.1038/s41467-021-24804-3.

Lionetti V, Barile L. Perioperative cardioprotection: back to bedside. Minerva Anestesiol. 2020 Apr;86(4):445-54. doi: 10.23736/S0375-9393.19.13848-5.

Papadopoulou A, Dickinson M, Samuels TL, Heiss C, Forni L, Creagh-Brown B. Efficacy of remote ischaemic preconditioning on outcomes following non-cardiac non-vascular surgery: a systematic review and meta-analysis. Perioper Med (Lond). 2023 Apr 10;12(1):9. doi: 10.1186/s13741-023-00297-0.

Momeni M, De Hert S. New advances in perioperative cardioprotection. F1000Res. 2019 Apr 24;8:F1000 Faculty Rev-538. doi: 10.12688/f1000research.17184.1.

Leung MK, Irwin MG. Perioperative cardioprotection. F1000Prime Rep. 2013;5:7. doi: 10.12703/P5-7.

Torregroza C, Roth S, Feige K, Lurati Buse G, Hollmann MW, Huhn R. Perioperative cardioprotection - From bench to bedside: Current experimental evidence and possible reasons for the limited translation into the clinical setting. Anaesthesist. 2021 May;70(5):401-412. German. doi: 10.1007/s00101-020-00912-5.

Guerrero-Orriach JL, Carmona-Luque MD, Gonzalez-Alvarez L. Heart failure after cardiac surgery: the role of halogenated agents, myocardial conditioning and oxidative stress. Int J Mol Sci. 2022 Jan 25;23(3):1360. doi: 10.3390/ijms23031360.

Piriou V, Ross S, Pigott D, Evans R, Foex P. Beneficial effect of concomitant administration of isoflurane and nicorandil. Br J Anaesth. 1997 Jul;79(1):68-77. doi: 10.1093/bja/79.1.68.

Wang Z, Yao M, Jiang L, Wang L, Yang Y, Wang Q, et al. Dexmedetomidine attenuates myocardial ischaemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother. 2022 Oct;154:113572. doi: 10.1016/j.biopha.2022.113572.

She H, Hu Y, Zhao G, Du Y, Wu Y, Chen W, et al. Dexmedetomidine ameliorates myocardial ischemia-reperfusion injury by inhibiting MDH2 lactylation via regulating metabolic reprogramming. Adv Sci (Weinh). 2024 Dec;11(48):e2409499. doi: 10.1002/advs.202409499.

Cai S, Liu Y, Cheng Y, Yuan J, Fang J. Dexmedetomidine protects cardiomyocytes against hypoxia/reoxygenation injury via multiple mechanisms. J Clin Lab Anal. 2022 Jul;36(7):e24119. doi: 10.1002/jcla.24119.

Caricati-Neto A, Errante PR, Menezes-Rodrigues FS. Recent advances in pharmacological and non-pharmacological strategies of cardioprotection. Int J Mol Sci. 2019 Aug 16;20(16):4002. doi: 10.3390/ijms20164002.

Jovanović A. Cardioprotective signalling: Past, present and future. Eur J Pharmacol. 2018 Aug 15;833:314-319. doi: 10.1016/j.ejphar.2018.06.029.

Penna C, Mancardi D, Rastaldo R, Pagliaro P. Cardioprotection: a radical view Free radicals in pre and postconditioning. Biochim Biophys Acta. 2009 Jul;1787(7):781-93. doi: 10.1016/j.bbabio.2009.02.008.

Comità S, Rubeo C, Giordano M, Penna C, Pagliaro P. Pathways for cardioprotection in perspective: focus on remote conditioning and extracellular vesicles. Biology (Basel). 2023 Feb 14;12(2):308. doi: 10.3390/biology12020308.

Davidson SM, Yellon DM. Exosomes and cardioprotection - A critical analysis. Mol Aspects Med. 2018 Apr;60:104-114. doi: 10.1016/j.mam.2017.11.004.

Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016 Jun 14;37(23):1789-98. doi: 10.1093/eurheartj/ehw113.

Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al; REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006 Dec;27(23):2775-83. doi: 10.1093/eurheartj/ehl388.

Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004 Jul 10-16;364(9429):141-8. doi: 10.1016/S0140-6736(04)16626-9.

Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006 Sep 21;355(12):1199-209. doi: 10.1056/NEJMoa055706.

Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006 Mar 14;113(10):1287-94. doi: 10.1161/CIRCULATIONAHA.105.575118.

Huikuri HV, Kervinen K, Niemelä M, Ylitalo K, Säily M, Koistinen P, et al; FINCELL Investigators. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008 Nov;29(22):2723-32. doi: 10.1093/eurheartj/ehn436.

Gramatiuk S, Ivanova Y, Sargsyan K, Kryvoruchko I, Estrin S. Cellular cardiomyoplasty for refractory angina: experimental rationale. Research Square, 2024. doi: 10.21203/rs.3.rs-4024504/v1.

Attar A, Bahmanzadegan Jahromi F, Kavousi S, Monabati A, Kazemi A. Mesenchymal stem cell transplantation after acute myocardial infarction: a meta-analysis of clinical trials. Stem Cell Res Ther. 2021 Dec 7;12(1):600. doi: 10.1186/s13287-021-02667-1.

Hosseinpour A, Kheshti F, Kazemi A, Attar A. Comparing the effect of bone marrow mono-nuclear cells with mesenchymal stem cells after acute myocardial infarction on improvement of left ventricular function: a meta-analysis of clinical trials. Stem Cell Res Ther. 2022 May 16;13(1):203. doi: 10.1186/s13287-022-02883-3.

Wöhrle J, Merkle N, Mailänder V, Nusser T, Schauwecker P, von Scheidt F, et al. Results of intracoronary stem cell therapy after acute myocardial infarction. Am J Cardiol. 2010 Mar 15;105(6):804-12. doi: 10.1016/j.amjcard.2009.10.060.

Zhang S, Sun A, Xu D, Yao K, Huang Z, Jin H, et al. Impact of timing on efficacy and safety of intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol. 2009 Aug;32(8):458-66. doi: 10.1002/clc.20575.

Yao K, Huang RC, Ge L, Qian JY, Li YL, Xu SK, et al. [Observation on the safety: clinical trial on intracoronary autologous bone marrow mononuclear cells transplantation for acute myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi. 2006 Jul;34(7):577-81. Chinese. PMID: 17081355.

Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al; Cardiovascular Cell Therapy Research Network. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011 Nov 16;306(19):2110-9. doi: 10.1001/jama.2011.1670.

Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA, et al. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J. 2011 Jun;161(6):1078-87.e3. doi: 10.1016/j.ahj.2011.01.028.

Carbone RG, Negrini S, Murdaca G, Fontana V, Puppo F. Stem cells treatment in chronic ischemic heart disease: a narrative review. Am J Stem Cells. 2023 Oct 20;12(4):65-72. PMID: 38021453.

Taljaard M, Ward MR, Kutryk MJ, Courtman DW, Camack NJ, Goodman SG, et al. Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am Heart J. 2010 Mar;159(3):354-60. doi: 10.1016/j.ahj.2009.12.021.

Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J. 2014 Jul;168(1):88-95.e2. doi: 10.1016/j.ahj.2014.03.022.

Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 2002 Oct 23;530(1-3):239-43. doi: 10.1016/s0014-5793(02)03477-4.

Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004 Jan 1;265(1):262-75. doi: 10.1016/j.ydbio.2003.09.028.

Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, et al. CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005 Jul 8;97(1):52-61. doi: 10.1161/01.RES.0000173297.53793.fa.

Streef TJ, Smits AM. Epicardial contribution to the developing and injured heart: exploring the cellular composition of the epicardium. Front Cardiovasc Med. 2021 Sep 23;8:750243. doi: 10.3389/fcvm.2021.750243.

Smart N, Bollini S, Dubé KN, Vieira JM, Zhou B, Davidson S, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011 Jun 8;474(7353):640-4. doi: 10.1038/nature10188.

Zhou B, Honor LB, Ma Q, Oh JH, Lin RZ, Melero-Martin JM, et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol. 2012 Jan;52(1):43-7. doi: 10.1016/j.yjmcc.2011.08.020.

Bollini S, Vieira JM, Howard S, Dubè KN, Balmer GM, Smart N, et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev. 2014 Aug 1;23(15):1719-30. doi: 10.1089/scd.2014.0019.

Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003 Dec;5(6):877-89. doi: 10.1016/s1534-5807(03)00363-0.

Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006 Dec 15;127(6):1151-65. doi: 10.1016/j.cell.2006.10.029.

Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005 Feb 10;433(7026):647-53. doi: 10.1038/nature03215.

Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004 Oct 29;95(9):911-21. doi: 10.1161/01.RES.0000147315.71699.51.

Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003 Sep 19;114(6):763-76. doi: 10.1016/s0092-8674(03)00687-1.

Zaruba MM, Soonpaa M, Reuter S, Field LJ. Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation. 2010 May 11;121(18):1992-2000. doi: 10.1161/CIRCULATIONAHA.109.909093.

Jesty SA, Steffey MA, Lee FK, Breitbach M, Hesse M, Reining S, et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13380-5. doi: 10.1073/pnas.1208114109.

Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014 Jul 9;509(7500):337-41. doi: 10.1038/nature13309.

Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 2007 Nov;1(2):138-49. doi: 10.1016/j.scr.2008.02.003.

Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, et al. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann N Y Acad Sci. 2004 May;1015:182-9. doi: 10.1196/annals.1302.015.

Leung HW, Moerkamp AT, Padmanabhan J, Ng SW, Goumans MJ, Choo A. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs. J Mol Cell Cardiol. 2015 May;82:228-37. doi: 10.1016/j.yjmcc.2015.02.016.

Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014 Jun 12;510(7504):273-7. doi: 10.1038/nature13233.

Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008 Jul 29;118(5):507-17. doi: 10.1161/CIRCULATIONAHA.108.778795.

Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008 Jul 29;118(5):498-506. doi: 10.1161/CIRCULATIONAHA.108.769562.

Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 2012 Sep 11;126(11 Suppl 1):S29-37. doi: 10.1161/CIRCULATIONAHA.111.084343.

Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011 Feb 4;8(2):228-40. doi: 10.1016/j.stem.2010.12.008.

Templin C, Kotlarz D, Marquart F, Faulhaber J, Brendecke V, Schaefer A, et al. Transcoronary delivery of bone marrow cells to the infarcted murine myocardium: feasibility, cellular kinetics, and improvement in cardiac function. Basic Res Cardiol. 2006 Jul;101(4):301-10. doi: 10.1007/s00395-006-0590-7.

Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005 May 3;111(17):2198-202. doi: 10.1161/01.CIR.0000163546.27639.AA.

Blocklet D, Toungouz M, Berkenboom G, Lambermont M, Unger P, Preumont N, et al. Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells. 2006 Feb;24(2):333-6. doi: 10.1634/stemcells.2005-0201.

Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al; REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006 Dec;27(23):2775-83. doi: 10.1093/eurheartj/ehl388.

Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 2005 Aug 30;112(9 Suppl):I150-6. doi: 10.1161/CIRCULATIONAHA.104.526749.

Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020 Jun;17(6):341-359. doi: 10.1038/s41569-019-0331-x.

Smart N, Riley PR. The stem cell movement. Circ Res. 2008 May 23;102(10):1155-68. doi: 10.1161/CIRCRESAHA.108.175158.

Pijnappels DA, Gregoire S, Wu SM. The integrative aspects of cardiac physiology and their implications for cell-based therapy. Ann N Y Acad Sci. 2010 Feb;1188:7-14. doi: 10.1111/j.1749-6632.2009.05077.x.

Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK, et al. Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ Res. 2015 Aug 28;117(6):558-75. doi: 10.1161/CIRCRESAHA.114.304792.

Lecour S, Bøtker HE, Condorelli G, Davidson SM, Garcia-Dorado D, Engel FB, et al. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res. 2014 Dec 1;104(3):399-411. doi: 10.1093/cvr/cvu225.

Davidson SM, Takov K, Yellon DM. Exosomes and cardiovascular protection. Cardiovasc Drugs Ther. 2017 Feb;31(1):77-86. doi: 10.1007/s10557-016-6698-6.

Arroyo-Campuzano M, Zazueta C. [Significance of exosomes in cardiology: heralds of cardioprotection]. Arch Cardiol Mex. 2021;91(1):105-113. Spanish. doi: 10.24875/ACM.20000335.

Rezaie J, Rahbarghazi R, Pezeshki M, Mazhar M, Yekani F, Khaksar M, et al. Cardioprotective role of extracellular vesicles: A highlight on exosome beneficial effects in cardiovascular diseases. J Cell Physiol. 2019 Dec;234(12):21732-45. doi: 10.1002/jcp.28894.

Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981 Jul 6;645(1):63-70. doi: 10.1016/0005-2736(81)90512-5.

Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985 Sep;101(3):942-8. doi: 10.1083/jcb.101.3.942.

Jadli AS, Parasor A, Gomes KP, Shandilya R, Patel VB. Exosomes in cardiovascular diseases: pathological potential of nano-messenger. Front Cardiovasc Med. 2021 Nov 12;8:767488. doi: 10.3389/fcvm.2021.767488.

Comfort N, Cai K, Bloomquist TR, Strait MD, Ferrante AW Jr, Baccarelli AA. Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles. J Vis Exp. 2021 Mar 28;(169):10.3791/62447. doi: 10.3791/62447.

Li D, Zhao Y, Zhang C, Wang F, Zhou Y, Jin S. Plasma exosomes at the late phase of remote ischemic pre-conditioning attenuate myocardial ischemia-reperfusion injury through transferring miR-126a-3p. Front Cardiovasc Med. 2021 Nov 30;8:736226. doi: 10.3389/fcvm.2021.736226.

Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77. doi: 10.1073/pnas.1521230113.

Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016 Nov 17;5:32570. doi: 10.3402/jev.v5.32570.

Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019 Feb 15;9:19. doi: 10.1186/s13578-019-0282-2.

Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002 Aug;2(8):569-79. doi: 10.1038/nri855.

Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010 Sep 10;73(10):1907-20. doi: 10.1016/j.jprot.2010.06.006.

Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones. 2018 May;23(3):441-454. doi: 10.1007/s12192-017-0856-z.

Göran Ronquist K. Extracellular vesicles and energy metabolism. Clin Chim Acta. 2019 Jan;488:116-21. doi: 10.1016/j.cca.2018.10.044.

Inubushi S, Kunihisa T, Kuniyasu M, Inoue S, Yamamoto M, Yamashita Y, et al. Serum exosomes expressing CD9, CD63 and HER2 from breast-cancer patients decreased after surgery of the primary tumor: a potential biomarker of tumor burden. Cancer Genomics Proteomics. 2024 Nov-Dec;21(6):580-4. doi: 10.21873/cgp.20474.

Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021 Sep 7;33(9):1744-62. doi: 10.1016/j.cmet.2021.08.006.

Elsherbini A, Bieberich E. Ceramide and exosomes: a novel target in cancer biology and therapy. Adv Cancer Res. 2018;140:121-154. doi: 10.1016/bs.acr.2018.05.004.

Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr). 2025 Feb;48(1):27-41. doi: 10.1007/s13402-024-00969-z.

Yuyama K, Yamamoto N, Yanagisawa K. Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: another putative pathway for GM1-induced amyloid fibril formation. J Neurochem. 2008 Apr;105(1):217-24. doi: 10.1111/j.1471-4159.2007.05128.x.

Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010 Aug;51(8):2105-20. doi: 10.1194/jlr.M003657.

Kalluri R, LeBleu VS. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol. 2016;81:275-80. doi: 10.1101/sqb.2016.81.030932.

Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000 Feb 29;101(8):841-3. doi: 10.1161/01.cir.101.8.841.

Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med. 2022 Feb 22;23(2):73. doi: 10.31083/j.rcm2302073.

Martinez MC, Andriantsitohaina R. Microparticles in angiogenesis: therapeutic potential. Circ Res. 2011 Jun 24;109(1):110-9. doi: 10.1161/CIRCRESAHA.110.233049.

Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004 Feb;124(3):376-84. doi: 10.1046/j.1365-2141.2003.04773.x.

Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005 Jul 1;67(1):30-8. doi: 10.1016/j.cardiores.2005.04.007.

Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999 Dec 1;94(11):3791-9. PMID: 10572093.

Tang Y, Li J, Wang W, Chen B, Chen J, Shen Z, et al. Platelet extracellular vesicles enhance the proangiogenic potential of adipose-derived stem cells in vivo and in vitro. Stem Cell Res Ther. 2021 Sep 9;12(1):497. doi: 10.1186/s13287-021-02561-w.

Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol. 2013 Apr 1;304(7):H954-65. doi: 10.1152/ajpheart.00835.2012.

Krishnan-Sivadoss I, Mijares-Rojas IA, Villarreal-Leal RA, Torre-Amione G, Knowlton AA, Guerrero-Beltrán CE. Heat shock protein 60 and cardiovascular diseases: An intricate love-hate story. Med Res Rev. 2021 Jan;41(1):29-71. doi: 10.1002/med.21723.

Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H3052-6. doi: 10.1152/ajpheart.01355.2006.

Liu N, Xie L, Xiao P, Chen X, Kong W, Lou Q, et al. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury. Mol Cell Biochem. 2022 Apr;477(4):1249-60. doi: 10.1007/s11010-021-04343-7.

Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol. 2024 May;25(5):396-415. doi: 10.1038/s41580-023-00694-9.

Marinescu MC, Lazar AL, Marta MM, Cozma A, Catana CS. Non-Coding RNAs: prevention, diagnosis, and treatment in myocardial ischemia-reperfusion injury. Int J Mol Sci. 2022 Mar 1;23(5):2728. doi: 10.3390/ijms23052728.

Davidson SM, Andreadou I, Barile L, Birnbaum Y, Cabrera-Fuentes HA, Cohen MV, et al. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc Res. 2019 Jun 1;115(7):1156-66. doi: 10.1093/cvr/cvy314.

Sun SJ, Wei R, Li F, Liao SY, Tse HF. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports. 2021 Jul 13;16(7):1662-73. doi: 10.1016/j.stemcr.2021.05.003.

Van Delen M, Derdelinckx J, Wouters K, Nelissen I, Cools N. A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy. J Extracell Vesicles. 2024 Jul;13(7):e12458. doi: 10.1002/jev2.12458.

Barile L, Marbán E. Injury minimization after myocardial infarction: focus on extracellular vesicles. Eur Heart J. 2024 May 13;45(18):1602-1609. doi: 10.1093/eurheartj/ehae089.

Barungi S, Hernández-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal JA, López-Ruiz E, et al. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Front Cell Dev Biol. 2023 Mar 16;11:1148768. doi: 10.3389/fcell.2023.1148768.

Rayat Pisheh H, Sani M. Mesenchymal stem cells derived exosomes: a new era in cardiac regeneration. Stem Cell Res Ther. 2025 Jan 23;16(1):16. doi: 10.1186/s13287-024-04123-2.

Zhang N, Luo Y, Zhang H, Zhang F, Gao X, Shao J. Exosomes derived from mesenchymal stem cells ameliorate the progression of atherosclerosis in ApoE-/- Mice via FENDRR. Cardiovasc Toxicol. 2022 Jun;22(6):528-44. doi: 10.1007/s12012-022-09736-8.

Ma J, Chen L, Zhu X, Li Q, Hu L, Li H. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2021 Aug 31;53(9):1227-36. doi: 10.1093/abbs/gmab102.

Sapna F, Raveena F, Chandio M, Bai K, Sayyar M, Varrassi G, et al. Advancements in heart failure management: a comprehensive narrative review of emerging therapies. Cureus. 2023 Oct 4;15(10):e46486. doi: 10.7759/cureus.46486.

Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017 Jun 9;356(6342):1026-30. doi: 10.1126/science.aam7928.

Yan F, Cui W, Chen Z. Mesenchymal stem cell-derived exosome-loaded microRNA-129-5p inhibits TRAF3 expression to alleviate apoptosis and oxidative stress in heart failure. Cardiovasc Toxicol. 2022 Jul;22(7):631-645. doi: 10.1007/s12012-022-09743-9.

Ke X, Yang R, Wu F, Wang X, Liang J, Hu X, et al. Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/jmy signaling pathway. Oxid Med Cell Longev. 2021 Jul 16;2021:5529430. doi: 10.1155/2021/5529430.

Published
2025/06/30
Section
Review article