Insights on Natural Products and Their Derivatives in Tuberculosis Management

  • Rajat Goyal .
  • Susheel Kumar
  • Kajal Garg
  • Neha Rani
  • Hitesh Chopra Saveetha college of Engineering
  • Kashish Wilson
  • Sumeet Gupta .
Keywords: Tuberculosis, Mycobacterium tuberculosis, Drug resistance, multiple, Biological products

Abstract


Tuberculosis (TB), a bacterial disease primarily affecting middle- as well as low-income countries, poses a significant public health threat. Natural products have historically been and remain a vital source of fresh medications for treating various diseases. The renewed interest in natural product research is partly a result of the increasing prevalence of drug-resistant Mycobacterium tuberculosis (MTb) strains along with adverse outcomes associated with first- and second-line anti-tubercular drugs. The TB complexity and the complications arising from the use of allopathic medications, such as multidrug resistance, highlight the effectiveness of natural medications in this context. Therefore, it is crucial to explore new treatment therapies to effectively mitigate the harmful effects associated with TB. More research is needed on various natural substances, both independently and in combination with currently approved drug regimens, as potential TB treatment options.

References

Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, et al. An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: multidimensional applications in tuberculosis disease management. Pharmaceuticals. 2023 Apr 12;16(4):581. doi: 10.3390/ph16040581

Holmes KK, Bertozzi S, Bloom BR, Jha P, Gelband H, DeMaria LM, Horton S. Major infectious diseases: key messages from disease control priorities. Major Inf Dis. 2017 Nov 3. doi: 10.1596/978-1-4648-0524-0.

Magee JG, Ward AC. Mycobacterium. Bergey’s manual of systematics of archaea and bacteria. 2015:1-84. doi: 10.1002/9781118960608.gbm00029.

Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The mycobacterial cell wall—peptidoglycan and arabinogalactan. Cold Spring Harbor Persp Med. 2015 Aug 1;5(8):a021113. doi: 10.1101/cshperspect.a021113.

Parashar S, Gautam RK, Goyal R, Sharma S, Gupta S, Mittal P. An insight view on the role of herbal medicines in infectious diseases. Current Trad Med. 2023 Aug 1;9(4):141-52. doi: 10.2174/2215083808666221006120944.

Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, Etienne G, et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep. 2017 Oct 9;7(1):12807. doi: 10.1038/s41598-017-12718-4.

Pai M, Schito M. Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J Inf Dis. 2015 Apr 1;211(suppl_2):S21-8. doi: 10.1093/infdis/jiu803.

Delogu G, Sali M, Fadda G. The biology of mycobacterium tuberculosis infection. Med J Hematol Inf Dis. 2013;5(1). doi: 10.4084/MJHID.2013.070.

Turner RD, Bothamley GH. Cough and the transmission of tuberculosis. J Inf Dis. 2015 May 1;211(9):1367-72. doi: 10.1093/infdis/jiu625.

Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, et al. What we know about tuberculosis transmission: an overview. J Inf Dis. 2017 Oct 1;216(suppl_6):S629-35. doi: 10.1093/infdis/jix362.

Christianakis S, Banerjee J, Kim JS, Jones BE. Tuberculosis in Immunocompromised Hosts. Chall Cases Pulmonol. 2012:109-26. doi: 10.1007/978-1-4419-7098-5_8.

Guirado E, Schlesinger LS. Modeling the Mycobacterium tuberculosis granuloma–the critical battlefield in host immunity and disease. Front Immunol. 2013 Apr 22;4:98. doi: 10.3389/fimmu.2013.00098.

Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. In: Seminars in immunology 2014;26(6):601-609. Academic Press. doi: 10.1016/j.smim.2014.09.009.

Al-Humadi HW, Al-Saigh RJ, Al-Humadi AW. Addressing the challenges of tuberculosis: a brief historical account. Front Pharmacol. 2017 Sep 26;8:264120. doi: 10.3389/fphar.2017.00689.

Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. NEJM. 2015 May 28;372(22):2127-35. doi: 10.1056/nejmra1405427.

Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev. 2018 Oct;31(4):10-128. doi: 10.1128/cmr.00021-18.

Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primers. 2016 Oct 27;2:16076. doi: 10.1038/nrdp.2016.76.

Mallamma T, Raghavendra NN, Goudanavar P. Spray dried linezolid-loaded inhalable chitosan microparticles for tuberculosis: a qbd-driven approach to enhance pulmonary delivery. Biomed Mat Dev. 2024 Dec 5:1-3. doi: 10.1007/s44174-024-00253-6.

Azadi D, Motallebirad T, Ghaffari K, Shojaei H. Mycobacteriosis and tuberculosis: laboratory diagnosis. Open Microbiol J. 2018;12:41. doi: 10.2174/1874285801812010041.

Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, Mfinanga S, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. The Lancet Inf Dis. 2018 Jul 1;18(7):e183-98. doi: 10.1016/s1473-3099(18)30110-5.

Efremenko YV, Arjanova OV, Prihoda ND, Yurchenko LV, Sokolenko NI, Mospan IV, et al. Clinical validation of sublingual formulations of Immunoxel (Dzherelo) as an adjuvant immunotherapy in treatment of TB patients. Immunotherapy. 2012 Mar;4(3):273-82. doi: 10.2217/imt.11.176.

Ahmad S, Mokaddas E. Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Resp Med. 2009 Dec 1;103(12):1777-90. doi: 10.1016/j.rmed.2009.07.010.

Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science. 2019 Sep 20;365(6459):eaaw1944. doi: 10.1126/science.aaw1944.

Urdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol. 2011 May 1;4(3):288-93. doi: 10.1038/mi.2011.10.

Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008 Jan 21;205(1):105-15. doi: 10.1084/jem.20071367.

Balasubramanian V, Pavelka Jr MS, Bardarov SS, Martin J, Weisbrod TR, McAdam RA, et al. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol. 1996 Jan;178(1):273-9. doi: 10.1128/jb.178.1.273-279.1996.

Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol. 1999 Oct 1;163(7):3920-7. doi: 10.4049/jimmunol.163.7.3920.

Bodnar KA, Serbina NV, Flynn JL. Fate of Mycobacterium tuberculosis within murine dendritic cells. Inf Immunity. 2001 Feb 1;69(2):800-9. doi: 10.1128/IAI.69.2.800-809.2001.

Henderson RA, Watkins SC, Flynn JL. Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol (Baltimore, Md.: 1950). 1997 Jul 15;159(2):635-43. doi: 10.4049/jimmunol.159.2.635.

Hertz CJ, Kiertscher SM, Godowski PJ, Bouis DA, Norgard MV, Roth MD, et al. Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J Immunol. 2001 Feb 15;166(4):2444-50. doi: 10.4049/jimmunol.166.4.2444.

Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science. 2000 Jun 2;288(5471):1647-51. doi: 10.1126/science.288.5471.1647.

Ernst JD. Macrophage receptors for Mycobacterium tuberculosis. Inf Immunity. 1998 Apr 1;66(4):1277-81. doi: 10.1128/iai.66.4.1277-1281.1998.

Schäfer G, Jacobs M, Wilkinson RJ, Brown GD. Non-opsonic recognition of Mycobacterium tuberculosis by phagocytes. J Innate Immunity. 2009 Nov 12;1(3):231-43. doi: 10.1159/000173703.

Schäfer G, Guler R, Murray G, Brombacher F, Brown GD. The role of scavenger receptor B1 in infection with Mycobacterium tuberculosis in a murine model. PloS One. 2009 Dec 24;4(12):e8448. doi: 10.1371/journal.pone.0008448.

Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol (Baltimore, Md.: 1950). 1990 Apr 1;144(7):2771-80. doi: 10.4049/jimmunol.144.7.2771.

Armstrong JA, Hart PA. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med. 1975 Jul 1;142(1):1-6. doi: 10.1084/jem.142.1.1.

Zimmerli S, Edwards S, Ernst JD. Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am J Resp Cell Mol Biol. 1996 Dec;15(6):760-70. doi: 10.1165/ajrcmb.15.6.8969271.

Chan ED, Iseman MD. Current medical treatment for tuberculosis. BMJ. 2002 Nov 30;325(7375):1282. doi: 10.1136/bmj.325.7375.1282.

Davies PD. The role of DOTS in tuberculosis treatment and control. Am J Resp Med. 2003 Jun;2:203-9. doi: 10.1007/bf03256649.

Quan D, Nagalingam G, Payne R, Triccas JA. New tuberculosis drug leads from naturally occurring compounds. Int J Inf Dis. 2017 Mar 1;56:212-20. doi: 10.1016/j.ijid.2016.12.024.

Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2009 Nov;13(11):1320-30. PMID: 19861002.

Gandhi NR, Brust JC, Shah NS. A new era for treatment of drug-resistant tuberculosis. Eur Resp J. 2018 Oct 1;52(4). doi: 10.1183/13993003.01350-2018.

Udwadia ZF. MDR, XDR, TDR tuberculosis: ominous progression. Thorax. 2012 Apr 1;67(4):286-8. doi: 10.1136/thoraxjnl-2012-201663.

Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, et al. Natural products for the management of castration-resistant prostate cancer: Special focus on nanoparticles based studies. Frontiers Cell Devel Biol. 2021 Nov 5;9:745177. doi: 10.3389/fcell.2021.745177.

Chopra H, Goyal R, Agarwal N, Mishra D, Gautam RK. Edible Mushroom assisted synthesis and applications of metal nanoparticles: A comprehensive review. J Integrated Sci Technol. 2023;11(1):427.

Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, e al. Chemopreventive potential of dietary nanonutraceuticals for prostate cancer: an extensive review. Frontiers Oncol. 2022 Jul 12;12:925379. doi: 10.3389/fonc.2022.925379.

Goyal R, Mittal P, Gautam RK, Kamal MA, Perveen A, Garg V, et al. Natural products in the management of neurodegenerative diseases. Nutrit Metab. 2024 May 16;21(1):26. doi: 10.1186/s12986-024-00800-4.

Dashti Y, Grkovic T, Quinn RJ. Predicting natural product value, an exploration of anti-TB drug space. Natural Product Rep. 2014;31(8):990-8. doi: 10.1039/c4np00021h.

Alene KA, Yi H, Viney K, McBryde ES, Yang K, Bai L, et al. Treatment outcomes of patients with multidrug-resistant and extensively drug resistant tuberculosis in Hunan Province, China. BMC Inf Dis. 2017 Dec;17:1-1. doi: 10.1186/s12879-017-2662-8.

Samad A, Sultana Y, Akhter MS, Aqil M. Treatment of tuberculosis: use of active pharmaceuticals. Recent Pat Antiinfect Drug Discov. 2008 Jan;3(1):34-44. doi: 10.2174/157489108783413209.

Bai X, Oberley‐Deegan RE, Bai A, Ovrutsky AR, Kinney WH, Weaver M, et al. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection. Respirology. 2016 Jul;21(5):951-7. doi: 10.1111/resp.12762.

Safwat NA, Kashef MT, Aziz RK, Amer KF, Ramadan MA. Quercetin 3-O-glucoside recovered from the wild Egyptian Sahara plant, Euphorbia paralias L., inhibits glutamine synthetase and has antimycobacterial activity. Tuberculosis. 2018 Jan 1;108:106-13. doi: 10.1016/j.tube.2017.11.005.

Jeon D, Jeong MC, Jnawali HN, Kwak C, Ryoo S, Jung ID, Kim Y. Phloretin exerts anti-tuberculosis activity and suppresses lung inflammation. Molecules. 2017 Jan 22;22(1):183. doi: 10.3390/molecules22010183.

Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol. 2016 Jan;90:39-79. doi: 10.1007/s00204-015-1580-z.

Sharma S, Kalia NP, Suden P, Chauhan PS, Kumar M, Ram AB, Khajuria A, Bani S, Khan IA. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis. 2014 Jul 1;94(4):389-96. doi: 10.1016/j.tube.2014.04.007.

Soh AZ, Pan A, Chee CB, Wang YT, Yuan JM, Koh WP. Tea drinking and its association with active tuberculosis incidence among middle-aged and elderly adults: the Singapore Chinese health study. Nutrients. 2017 May 25;9(6):544. doi: 10.3390/nu9060544.

Zhang D, Lu Y, Liu K, Liu B, Wang J, Zhang G, et al. Identification of less lipophilic riminophenazine derivatives for the treatment of drug-resistant tuberculosis. J Med Chem. 2012 Oct 11;55(19):8409-17. doi: 10.1021/jm300828h.

Dong M, Pfeiffer B, Altmann KH. Recent developments in natural product-based drug discovery for tuberculosis. Drug Disc Today. 2017 Mar 1;22(3):585-91. doi: 10.1016/j.drudis.2016.11.015.

Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules. 2021 Aug 18;26(16):4998. doi: 10.3390/molecules26164998.

Singla RK, Sharma P, Kumar D, Gautam RK, Goyal R, Tsagkaris C, et al. The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Frontiers Pharmacol. 2022 Oct 26;13:987088. doi: 10.3389/fphar.2022.987088.

Marini E, Di Giulio M, Magi G, Di Lodovico S, Cimarelli ME, Brenciani A, et al. Curcumin, an antibiotic resistance breaker against a multiresistant clinical isolate of Mycobacterium abscessus. Phytotherapy Res. 2018 Mar;32(3):488-95. doi: 10.1002/ptr.5994.

Shariq M, Quadir N, Sharma N, Singh J, Sheikh JA, Khubaib M, et al. Mycobacterium tuberculosis RipA dampens TLR4-mediated host protective response using a multi-pronged approach involving autophagy, apoptosis, metabolic repurposing, and immune modulation. Frontiers Immunol. 2021 Mar 4;12:636644. doi: 10.3389/fimmu.2021.636644.

Arnett E, Weaver AM, Woodyard KC, Montoya MJ, Li M, Hoang KV, et al. PPARγ is critical for Mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis. PLoS Path. 2018 Jun 21;14(6):e1007100. doi: 10.1371/journal.ppat.1007100.

Bah A, Sanicas M, Nigou J, Guilhot C, Astarie-Dequeker C, Vergne I. The lipid virulence factors of Mycobacterium tuberculosis exert multilayered control over autophagy-related pathways in infected human macrophages. Cells. 2020 Mar 9;9(3):666. doi: 10.3390/cells9030666.

Lin YM, Zhou Y, Flavin MT, Zhou LM, Nie W, Chen FC. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem. 2002 Aug 1;10(8):2795-802. doi: 10.1016/s0968-0896(02)00094-9.

Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010 Oct 21;15(10):7313-52. doi: 10.3390/molecules15107313.

Mittal P, Goyal R, Kapoor R, Wan C, Gautam RK. Natural products-based drugs: potential drug targets against neurological degeneration. Current Neuropharmacol. 2023 Mar 3;21(4):777. doi: 10.2174/1570159x21666230220102605.

Hirayama Y, Yoshimura M, Ozeki Y, Sugawara I, Udagawa T, Mizuno S, et al. Mycobacteria exploit host hyaluronan for efficient extracellular replication. PLoS Pathogens. 2009 Oct 30;5(10):e1000643. doi: 10.1371/journal.ppat.1000643.

Bhave DP, Wilson III B, Carroll KS. Drug targets in mycobacterial sulfur metabolism. Inf Disorders-Drug Targets. 2007 Jun 1;7(2):140-58. doi: 10.2174/187152607781001772.

Jeon D, Jeong MC, Jnawali HN, Kwak C, Ryoo S, Jung ID, et al. Phloretin exerts anti-tuberculosis activity and suppresses lung inflammation. Molecules. 2017 Jan 22;22(1):183. doi: 10.3390/molecules22010183.

Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004 Jan 1;203(2):127-37. doi: 10.1016/j.canlet.2003.09.002.

Kumar A, Chopra K, Mukherjee M, Pottabathini R, Dhull DK. Current knowledge and pharmacological profile of berberine: an update. European J Pharmacol. 2015 Aug 15;761:288-97. doi: 10.1016/j.ejphar.2015.05.068.

Gilani AH, Janbaz KH. Prevention of acetaminophen-induced liver damage by Berberis aristata leaves. Biochem Soc Trans. 1992 Nov;20(4):347S. doi: 10.1042/bst020347s.

Wang F, Zhou HY, Zhao G, Fu LY, Cheng L, Chen JG, et al. Inhibitory effects of berberine on ion channels of rat hepatocytes. World J Gastroenterol. 2004 Oct 10;10(19):2842. doi: 10.3748/wjg.v10.i19.2842.

Potdar D, Hirwani RR, Dhulap S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia. 2012 Jul 1;83(5):817-30. doi: 10.1016/j.fitote.2012.04.012.

Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001 Mar 23;104(6):901-12. doi: 10.1016/s0092-8674(01)00286-0.

World Health Organization [Internet]. Global tuberculosis report 2013. World Health Organization; 2013. [Cited: 1-Jan-2025]. Available at: https://www.who.int/publications/i/item/9789241564656.

Machado D, Pires D, Perdigao J, Couto I, Portugal I, Martins M, et al. Ion channel blockers as antimicrobial agents, efflux inhibitors, and enhancers of macrophage killing activity against drug resistant Mycobacterium tuberculosis. PloS One. 2016 Feb 26;11(2):e0149326. doi: 10.1371/journal.pone.0149326.

Caleffi-Ferracioli KR, Cardoso RF, de Souza JV, Murase LS, Canezin PH, Scodro RB, et al. Modulatory effects of verapamil in rifampicin activity against Mycobacterium tuberculosis. Future Microbiol. 2019 Feb;14(3):185-94. doi: 10.2217/fmb-2018-0277.

Hegeto LA, Caleffi-Ferracioli KR, Nakamura-Vasconcelos SS, de Almeida AL, Baldin VP, Nakamura CV, et al. In vitro combinatory activity of piperine and anti-tuberculosis drugs in Mycobacterium tuberculosis. Tuberculosis. 2018 Jul 1;111:35-40. doi: 10.1016/j.tube.2018.05.006.

Caleffi-Ferracioli KR, Amaral RC, Demitto FO, Maltempe FG, Canezin PH, Scodro RB, et al. Morphological changes and differentially expressed efflux pump genes in Mycobacterium tuberculosis exposed to a rifampicin and verapamil combination. Tuberculosis. 2016 Mar 1;97:65-72. doi: 10.1016/j.tube.2015.12.010.

Demitto FD, do Amaral RC, Maltempe FG, Siqueira VL, Scodro RB, Lopes MA, et al. In vitro activity of rifampicin and verapamil combination in multidrug-resistant Mycobacterium tuberculosis. PLoS One. 2015 Feb 17;10(2):e0116545. doi: 10.1371/journal.pone.0116545.

Sharma S, Kumar M, Sharma S, Nargotra A, Koul S, Khan IA. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J Antimicrob Chemoth. 2010 Aug 1;65(8):1694-701. doi: 10.1093/jac/dkq186.

Hegeto LA, Caleffi-Ferracioli KR, Perez de Souza J, Almeida AL, Nakamura de Vasconcelos SS, Barros IL, et al. Promising antituberculosis activity of piperine combined with antimicrobials: a systematic review. Microbial Drug Res. 2019 Jan 1;25(1):120-6. doi: 10.1089/mdr.2018.0107.

Philipova I, Valcheva V, Mihaylova R, Mateeva M, Doytchinova I, Stavrakov G. Synthetic piperine amide analogs with antimycobacterial activity. Chem Biol Drug Design. 2018 Mar;91(3):763-8. doi: 10.1111/cbdd.13140.

Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Therapeutics. 2002 Aug 1;302(2):645-50. doi: 10.1124/jpet.102.034728.

Ahmad N, Mukhtar H. Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutrition Rev. 1999 Mar 1;57(3):78-83. doi: 10.1111/j.1753-4887.1999.tb06927.x.

Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003;43(1):89-143. doi: 10.1080/10408690390826464.

Khan A, Ali NH, Santercole V, Paglietti B, Rubino S, Kazmi SU, et al. Camellia sinensis mediated enhancement of humoral immunity to particulate and non‐particulate antigens. Phytotherapy Res. 2016 Jan;30(1):41-8. doi: 10.1002/ptr.5498.

Li Y, Jiang X, Hao J, Zhang Y, Huang R. Tea polyphenols: application in the control of oral microorganism infectious diseases. Arch Oral Biol. 2019 Jun 1;102:74-82. doi: 10.1016/j.archoralbio.2019.03.027.

Sun T, Qin B, Gao M, Yin Y, Wang C, Zang S, e al. Effects of epigallocatechin gallate on the cell-wall structure of Mycobacterial smegmatis mc2155. Natural Product Res. 2015 Nov 17;29(22):2122-4. doi: 10.1080/14786419.2014.989391.

Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, et al. Molecular basis of triclosan activity. Nature. 1999 Apr 1;398(6726):383-4. doi: 10.1038/18803.

Slayden RA, Lee RE, Barry 3rd CE. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Molecular Microbiol. 2000 Nov;38(3):514-25. doi: 10.1046/j.1365-2958.2000.02145.x.

Sharma SK, Kumar G, Kapoor M, Surolia A. Combined effect of epigallocatechin gallate and triclosan on enoyl-ACP reductase of Mycobacterium tuberculosis. Bioch Bioph Res Comm. 2008 Mar 28;368(1):12-7. doi: 10.1016/j.bbrc.2007.10.191.

Sieniawska E. Targeting mycobacterial enzymes with natural products. Chem Biol. 2015 Oct 22;22(10):1288-300. doi: 10.1016/j.chembiol.2015.08.012.

Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science. 2015 Jun 5;348(6239):1106-12. doi: 10.1126/science.aaa4690.

Published
2025/04/30
Section
Review article