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Abstract

Cardiovascular diseases (CVDs) remain the leading global cause of death
and disability, underscoring the need for improved therapies. Key emerg-
ing strategies include pharmacological cardioprotection, cell-based thera-
pies and the use of exosomes as therapeutic agents and biomarkers. Aim
of this study was to characterise contemporary approaches to cardiopro-
tection in CVDs, including pharmacological agents, cell-based therapies
and exosome-based strategies, based on an analysis of evidence-based
data. A systematic literature search was performed using databases in-
cluding PubMed, Clinical Key (Elsevier), Cochrane Library, eBook Business
Collection and Google Scholar. Keywords included cardioprotection, exo-
somes, cell-based therapies and pharmacological approaches. Article se-
lection followed evidence-based medicine principles and the PRISMA
guidelines. Current cardioprotective strategies include both traditional
pharmacological agents, such as (-blockers, calcium channel blockers,
ACE inhibitors, statins and nitrates, as well as innovative approaches like
cell-based therapies and the use of exosomes. The advantages and limita-
tions of cell therapy were analysed, including challenges related to low cell
survival, failure of differentiation and the risk of arrhythmias. The role of
exosomes and microvesicles as promising markers of cardiovascular inju-
ry and potential therapeutic agents was also explored. Combining phar-
macological, cell-based and exosome-based strategies offers new pros-
pects for cardioprotection in CVDs. Further research is required to optimise
the clinical use of cell therapies and to confirm the efficacy of exo-
some-based interventions.

Key words: Cardiovascular diseases; Prevention and control, cardiac;
Exosomes; Cell and tissue-based therapy; Therapeutics; Ischaemia; Isch-
aemic injury; Regenerative medicine; Adrenergic beta-antagonists; Calci-
um channel blockers; Microvesicles.
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Introduction

Cardiovascular diseases (CVDs) are the leading
cause of global mortality and disability. They in-
clude a range of conditions, with atherosclerosis,
ischaemic heart disease (IHD), acute cerebro-
vascular accidents, cardiomyopathies and heart
failure (HF) being particularly significant.! These

conditions often coexist and their pathogenesis is
closely interconnected, substantially complicat-
ing diagnosis and treatment.?

The primary risk factors for CVD development in-
clude cardiometabolic, behavioural, environmen-
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tal and social determinants, which interact to
promote the onset and progression of cardiovas-
cular pathology. Globally, the prevalence of these
risk factors has led to a continuous rise in CVD
burden. From 1990 to 2019, the number of peo-
ple living with CVD grew from 271 million to 523
million, while CVD-related deaths increased from
12.1 million to 18.6 million.! These trends high-
light the ongoing rise in CVD incidence and mor-
tality globally. The prevalence of CVDs is expect-
ed to grow, driven mainly by population growth
and aging, particularly in regions like Northern
Africa, Latin America, the Caribbean and South-
east Asia. The proportion of elderly individuals in
these regions is expected to double by 2050, plac-
ing increased pressure on healthcare systems.?

The COVID-19 pandemic, which began in 2019,
has added another layer of complexity to global
health challenges. More than seven million deaths
have been reported and millions more individuals
have suffered significant health impairments. Al-
though vaccination programs have substantially
reduced mortality and hospitalisation rates, the
cardiovascular consequences of COVID-19 remain
a pressing concern. Many post-infection patients
experience persistent cardiac symptoms, often
without clear objective findings, complicating
both diagnosis and management. Moreover, the
lack of adequately matched control groups and
insufficient data for developing effective thera-
peutic strategies further emphasises the urgency
of addressing these issues.*

Contemporary IHD management includes percu-
taneous coronary intervention (PCI), coronary
artery bypass grafting (CABG), pharmacothera-
py and non-pharmacological approaches. PCI and
CABG are highly effective in improving myocardi-
al perfusion, alleviating symptoms and enhancing
quality of life. Concurrently, conservative treat-
ment strategies, particularly pharmacotherapy,
play a critical role in controlling atherosclerosis
progression and preventing atherothrombotic
events. Combination therapy, including anti-isch-
aemic agents ([3-blockers, calcium channel block-
ers), antiplatelet therapy (aspirin, clopidogrel)
and lipid-lowering agents (statins), manages IHD
symptoms, reduces event risk and slows disease
progression.>”’
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Given the limitations of conventional thera-
pies, there is growing interest in regenerative
approaches for myocardial repair, particularly
in advanced cardiovascular disease. Stem cell-
based therapies, owing to their differentiation,
regenerative and immunomodulatory proper-
ties, offer promising prospects for cardiology.
Studies have shown that stem cells can promote
myocardial regeneration after infarction and im-
prove outcomes in heart failure patients.? These
innovative strategies can potentially radically
reshape treatment approaches and significant-
ly improve prognosis in individuals with severe
cardiac pathology.

Aim of this study was to characterise contempo-
rary approaches to cardioprotection in cardio-
vascular diseases, with particular emphasis on
pharmacological agents, cell-based therapies and
exosome-based strategies, based on the analysis
of evidence-based data.

Data collection

A comprehensive search of the literature was
carried out across multiple databases, including
PubMed, Clinical Key Elsevier, the Cochrane Li-
brary, the eBook Business Collection and Google
Scholar, using keywords like “cardioprotection,”
“exosomes,” “cell-based therapies,” and “phar-
macological approaches.” Studies were selected
following established guidelines for systematic
reviews. The process was divided into three stag-
es: First, relevant literature was identified using
keywords such as Cardioprotection, Pharmaco-
therapy, Stem Cells, Exosomes, Cardiovascular
Diseases and Regenerative Medicine. Second, ab-
stracts were reviewed and studies that did not
meet the inclusion criteria were excluded. Final-
ly, full-text articles were examined to assess their
relevance and compliance with the inclusion cri-
teria. Inclusion criteria comprised the recency of
data (preferably within the last five years), open
access to full-text articles and scientific relevance
to the topic of cardioprotection in cardiovascular
diseases.
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Cardioprotective agents:
classification, mechanisms of
action and their role in clinical
practice

Cardioprotective agents are specialised phar-
macological and biologically active substances
capable of reducing the risk of myocardial injury,
improving metabolic processes within cardio-
myocytes and facilitating cardiac adaptation to
stressful conditions.?>%® The modern approach
to cardioprotection relies on the established
understanding of underlying molecular mecha-
nisms of action of cardioprotective agents (Ta-
ble 1) and includes the application of innovative
technologies that contribute to quality of life and
increasing long-term survival.®

Cardioprotection research is advancing rapidly.
Gene therapy and nanotechnology are consid-
ered promising directions in this area. Genetic
approaches enhance cardiac cell stress resis-
tance through targeted modulation of intracellu-
lar signalling. Nanotechnologies provide targeted
delivery of cardioprotective agents to damaged
myocardial areas, significantly improving thera-
peutic efficacy and minimising side effects. This
opens new opportunities for treating cardiovas-
cular diseases and developing therapies based on
innovative technologies.

B-adrenergic receptor blockers

B-blockers exert key cardioprotective effects
by reducing myocardial oxygen and energy
substrate demand through negative inotropic
and chronotropic actions, prolonging diastolic

Table 1: Key pharmacological groups of cardioprotective agents®
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perfusion and lowering intracellular calcium
concentrations. Additionally, they restore
[-adrenergic receptor affinity to catecholamines
in states of hypercatecholaminaemia common in
cardiovascular diseases.’

Randomised controlled trials have shown that
-blockers reduce mortality and improve cardiac
function. Recent research focuses on developing
more selective agents with reduced pulmonary
and metabolic side effects, thereby broadening
their clinical use.!?-12

In the perioperative setting, -blocker continu-
ation is recommended for patients with existing
cardiovascular disease. However, a large cohort
study (11,875 patients, 2018) questioned their
preoperative initiation, showing increased risks
of mortality, stroke and myocardial infarction.
Initiating B-blocker therapy in low-risk patients
may impair compensatory hemodynamic re-
sponses to blood loss, highlighting the need for
further studies to define optimal perioperative
indications.!0-12

Calcium channel blockers

Calcium channel blockers (CCBs) improve myo-
cardial perfusion, reduce cardiac energy expen-
diture and optimise oxygen consumption by
limiting calcium influx. They decrease vascular
smooth muscle tone, lower peripheral resistance

Agents predominantly targeting

Antioxidant agents and electron

Inhibitors of free fatty ATP-sensitive K*

energy processes acceptors cid oxidation channel openers
Phosphocreatine Quercetin L-carnitine (Levocarnitine) Nicorandil
Magnesium gluconate Lecithin Trimethylhydrazinium propionate
Potassium gluconate Thiotriazoline Trimetazidine hydrochloride
Carbonate Niacin Ranolazine
Taurine L-arginine monohydrate
Meldonium Ceruloplasmin
Sodium adenosine triphosphate Methylethylpyridinol
Ethylmethylhydroxypyridine
succinate
Ubiquinone

Cytochrome oxidase
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and enhance blood flow, benefitting patients
with hypertension and ischaemic heart disease.’

While CCBs show potential for reducing isch-
aemia-reperfusion myocardial injury (IRMI),
clinical evidence remains inconclusive, necessi-
tating further investigation. These agents also
lower heart rate, decreasing myocardial work-
load and improving cardiac function, which sup-
ports their role in managing heart failure. Future
studies are essential to clarify their impact on
IRMI and long-term cardiovascular outcomes.'?-

Angiotensin-converting enzyme
inhibitors (ACEls) and angiotensin Il
receptor blockers (ARBS)

ACEIs and ARBs are key therapies for hyperten-
sion and chronic heart failure, improving ventric-
ular filling, reducing arrhythmias and mitigat-
ing reperfusion injury’ Their cardioprotective
effects stem from preventing left ventricular
hypertrophy and remodelling, enhancing myo-
cardial function and exerting vascular protec-
tive actions by inhibiting smooth muscle prolif-
eration. In the perioperative period, ACE-Is and
ARBs lower peripheral resistance and improve
left ventricular function, although intraoperative
use may provoke hemodynamic instability, war-
ranting careful timing of discontinuation.

Levosimendan, a novel calcium sensitiser, offers
potent inotropic support and moderate vasodi-
lation, improving hemodynamics and reducing
myocardial oxygen demand. However, it requires
careful monitoring due to risks of hypotension
and tachycardia.'*- 1517

Diuretics

Diuretics remain essential for managing cardio-
vascular diseases, particularly CHF. Thiazide
diuretics effectively reduce blood volume and
blood pressure in early hypertension, while loop
diuretics like furosemide address more severe
heart failure and oedema.’

Appropriate diuretic use prevents complications
such as pulmonary oedema and heart failure
exacerbations, improving quality of life and re-
ducing hospitalisations. Continuous monitoring
is necessary to minimise adverse effects and en-
sure safe treatment.'®?
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Statins

Statins are pivotal in modern cardiology for re-
ducing the risk of major cardiovascular events.
Beyond their lipid-lowering properties, they exert
anti-inflammatory and antioxidant effects, stabi-
lise atherosclerotic plaques, enhance endothelial
function and promote nitric oxide synthesis, con-
tributing to vasodilation and blood pressure re-
duction.” Their multifaceted actions underscore
their role in preventing myocardial infarction,
stroke and atherosclerotic disease progression.

Nitrates

Nitrates play a critical role in alleviating acute
myocardial ischaemia symptoms. Nitroglycerin
reduces preload and afterload, lowers myocardi-
al energy demand and improves subendocardial
perfusion by decreasing left ventricular diastolic
pressure.

Additionally, nitrates relieve coronary artery
spasms, a key trigger of acute ischaemic events
and reduce platelet aggregation via nitric ox-
ide-mediated pathways, enhancing endothelial
function.?® 2! The combination of these pharma-
cological agents provides a comprehensive ap-
proach to managing cardiovascular diseases.
Therapy should be tailored to individual patient
factors and comorbidities. Ongoing refinement of
existing therapies and development of new agents
promise improved cardiovascular outcomes.

Specific aspects of
cardioprotection in the
perioperative period

Myocardial ischaemia-reperfusion injury (IRI) in
the postoperative period is a complex, multifac-
torial process, involving disturbances in oxygen
supply-demand balance even in patients with an-
atomically normal coronary arteries.?%23

Factors contributing to ischaemic imbalance in-
clude significant coronary stenoses, coronary
artery spasms, microvascular dysfunction and
embolisation, as well as increased myocardial
oxygen consumption.” Additional perioperative
triggers include tachyarrhythmias, hypertension
or hypotension, bradyarrhythmias impairing
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cardiac output and hypoxaemia, all exacerbating
myocardial ischaemia. 2#-26

Other contributors such as severe anaemia, coro-
nary vasospasm, electrolyte imbalances, acidosis
and shock further elevate the risk of type 2 myo-
cardial infarction. Therefore, meticulous mon-
itoring and management of these variables are
critical for optimising myocardial perfusion, fa-
cilitating recovery and preventing serious post-
operative complications.

Halogenated inhalational anaesthetics

Modern inhalational anaesthetics, notably sevo-
flurane and desflurane, offer cardioprotection
through anaesthetic preconditioning, attenu-
ating apoptotic pathways during reperfusion.
Their dose-dependent haemodynamic effects
— reduced afterload with preserved contractil-
ity and improved diastolic function — facilitate
myocardial adaptation to surgical stress. How-
ever, clinical evidence remains mixed, influenced

Non-pharmacological
cardioprotection and limitations
of cell therapy

Decades ago, it was found that cardiomyocytes
have signalling pathways that protect against
ischaemia-reperfusion injury, a mechanism
known as “cardioprotection”.3?** Cardioprotec-
tion can be induced by ischaemic precondition-
ing and postconditioning of the myocardium.3?
While highly protective, these methods involve
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by patient and procedural factors.?” 28 Current
guidelines support their use in hemodynamically
stable patients with IHD and preserved ejection
fraction.

a2-adrenergic receptor agonists

a2-adrenergic receptor agonists may provide
cardioprotection by decreasing heart rate,
lowering blood pressure and reducing oxygen
consumption, while promoting coronary
vasodilation via nitric oxide and adenosine. They
also possess anti-inflammatory, antioxidant and
antiapoptotic properties. Dexmedetomidine, a
newer agent, shows promise but requires further
validation. While early studies suggested a
reduction in perioperative myocardial infarctions,
later meta-analyses found nodecreasein mortality
or ischaemic events and confirmed increased
risks of bradycardia and hypotension.?°-3! Thus,
a2-agonists are currently not recommended for
perioperative cardioprotection.

ischaemia-reperfusion, which carries risks like
atherosclerotic damage and microembolisation,
especially during postconditioning. Alternative-
ly, cardioprotection can be induced through brief
ischaemia-reperfusion at remote non-cardiac
sites (remote ischaemic conditioning).3? 35

Table 2: Characteristics of cell sources for therapeutic cardiac regeneration (adapted from®’)

f =1
(=]
E Cell type Source Markers  Advantages Limitations References
&
Limited regenerative potential;
Phase 3 trials;
. Minimal cardiac function
'(% Bone marrow and improvement, limited engraftment; Limited
& - Bone marrow, CD117+, Easy cryopreservation; differentiation
S peripheral blood Perioheral blood CD34* . e tential- 38-52
S progenitor cells eripheral bloo Genetically modifiable; pf) gn 1a ;
2 Safe; Limited yield
w- Accessible;

No ethical or immunological issues;
Extensive clinical experience
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Limited regenerative potential;
Phase 3 trials;
Minimal cardiac function

Embryonic, adult

improvement, limited engraftment;

Limited differen-

gntg‘;’:ggnls’mal tissues, tooth gg]?g Easy cryopreservation; tiation potential; 53
germ Genetically modifiable; Yield-dependent
Safe;
Accessible;
5 Source of paracrine factors
®
E Side population . Abcg2+, Limited regenerative potential; - .
S cells Heart biopsy Mdr1+ No clinical strategy Limited yield 54-56
»
i Wt1+,
Epicardial Heart Thx18+, Limited regenerative potential; - )
progenitor cells development CD90+, No clinical strategy Limited yield 57-60
CD44+
Isl+ progenitor Heart . Limited regenerative potential; - .
cells development Isft No clinical strategy Limited yield 61-63
g—clgt;; High regenerative potential;
Cardiosphere- . By Phase 1-2 trials; o
. Heart + ) .
derived cells eart biopsy gg;g? * Improved cardiac function; Limited yield 64
CD45- Limited engraftment
High regenerative potential;
. . c-kit* Phase 2 trials; o .
- H ) ) _
e-kit eart biopsy CD45- Improved cardiac function; Limited yield 65-68
Limited engraftment
S
= c-kit*,
=] +
§, ggﬂ_ High regenerative potential;
T  Sca-1 Heart biopsy CD3 4_’ Preclinical stage; Limited yield 69-71
o ’ i
§ CD105¢, Limited engraftment
CD45-
. . . . Ethical concerns;
Embryonic Blastocyst Octd, High 4 e_gen.eratlve potential; Teratoma
stem cells inner mass Nanogr, Preclinical; f tion; 12
SSEA4+ Phase 1 trials ormation;
Immunogenicity
. Oct4-, High regenerative potential;
Isqgrlfzgllpsl uripotent ngr?]raot?(:irngrd Nanog*, Preclinical stage; Tumorigenicity 73-76
SSEA4+ Improved cardiomyocyte differentiation

An alternative approach involves attempting to
regenerate lost myocardium or improve myo-
cardial function. However, due to the terminal
differentiation of mammalian cardiomyocytes,
spontaneous myocardial regeneration through
cell proliferation is extremely limited. Therefore,
efforts have focused on myocardial regeneration
via the injection of various stem cell types.3® Yet,
the biological activity of transplanted cells varies
significantly depending on cell source, prepara-
tion and delivery methods (Table 2).

Cell therapy holds significant potential for treating
cardiovascular diseases (CVD), but its clinical im-
plementation faces several important challenges.
Key obstacles include poor engraftment, low sur-
vival of transplanted cells and inefficient cell dif-
ferentiation. Additionally, minimising the risk of
adverse effects, such as arrhythmias following cell
therapy, remains critical. To establish cell therapy
as a standard treatment, these challenges must be
addressed through further research. A detailed
analysis of these aspects is provided below.%”
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Low engraftment of bone marrow
and blood-derived endothelial
progenitor cells

Cell therapy is limited by poor engraftment, as
few transplanted cells survive and contribute to
repair—mainly due to insufficient blood supply
in ischaemic tissue.”””7°

Poor viability of transplanted cells in
ischaemic tissues

Ischaemic areas often lack sufficient blood sup-
ply, leading to tissue damage and impaired organ
function. Transplanted cells suffer from oxygen
and nutrient deprivation, resulting in high rates
of cell death. Additionally, insufficient removal of
metabolic waste products further compromises
cell viability.®°

Limited differentiation of adult stem
cells into functional heart cells

A key aim of cell therapy is to generate mature
cardiomyocytes that repair damaged heart tis-
sue. However, poor differentiation—due to inade-
quate induction or hostile tissue environments—
often limits its effectiveness.®!

Limited recruitment of circulating or
resident cardiac stem cells

Another key issue is the insufficient recruitment
of cardiac stem cells to the injured myocardium.
Both circulating and resident stem cell pools are
often inadequate, with impaired activation mech-
anisms limiting their availability for therapy.?

Abnormal electromechanical
coupling leading to arrhythmias

One serious risk of cell therapy is the disruption
of normal cardiac electrical activity due to abnor-
mal coupling between transplanted and native
cells. This can trigger dangerous arrhythmias
and represents a major safety concern.®?

Limitations of left ventricular ejection
fraction (LVEF) as an indirect marker
in assessing cell therapy

LVEF is commonly used to assess the effective-
ness of cell therapy. However, because it is highly
load-dependent, it may not reliably reflect true

myocardial recovery. Changes in preload and
afterload can mask actual improvements in con-
tractility.®

Inappropriate selection of patient
population

Another limitation is the selection of patients
with relatively preserved cardiac function, such

as those with baseline LVEF around 50 %, who
may not benefit significantly from cell therapy.®*

Availability of well-developed
alternative therapeutic strategies

Several established interventions, such as percu-
taneous coronary intervention, fibrinolysis, ACE
inhibitors and B-blockers, may offer better or
comparable outcomes, reducing the relative need
for cell therapy.®

Lack of experimental validation of
cell preparations during clinical trials

Many trials lack robust experimental validation of
cell preparations, leading to inconsistent results
and raising concerns about the reproducibility
and standardisation of therapies. Thus, despite
some promising results in preserving myocardi-
um and improving cardiac function, cell therapy
for CVD has not yet succeeded in increasing the
number of cardiomyocytes. Recently, attention
has shifted toward factors secreted by stem cells
that may mediate paracrine effects. Among these,
exosomes have emerged as a promising mediator
of therapeutic effects.3¢

Exosomes and microvesicles
as biomarkers in cardiovascular
disease

Nearly all cardiovascular cells release small lipid
vesicles called exosomes. Though their isolation
and analysis remain technically challenging, exo-
somes from different sources have shown strong
cardioprotective properties.?® Extracellular vesi-
cles (EVs), particularly exosomes, play a paracrine
role by releasing into the extracellular space and
inducing anti-apoptotic, angiogenic, immunomod-
ulatory and anti-fibrotic responses.?” 88
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Table 3: Molecular components of exosomes (adapted from®’)

Type Category Examples References
Tetraspanins CD9, CD37, CD53, CD55, CD63, CD81, CD82 96, 97
Cytoskeletal Actin, tubulin, cofilin-1, moesin, myosin, vimentin, ezrin, radixin, perlecan, 96— 98
proteins fibronectin, THBS1, IQGAP1, keratin
Tetraspanins CD9, CD37, CD53, CD55, CD63, CD81, CD82 96, 97
Biogenesis ESCRT-0, I, I, Il, Her, Vps4, TSG101, Alix, flotillin, clathrin 98
proteins
Transport and RAS-related proteins 5 and 7, annexins |-VI, dynamin, syntaxin-3, RAB4, RAB5, 96-98
synthesis RAB7, RAB11, RAP1B, RABGDI, SLC3A2, CLIC1
Proteins ;
Heat shock aB-crystallin, HSP20, HSP22, HSP27, HSP40, HSP60, HSP70, HSP90, HSC70, 96, 98,
proteins HSPA5, CCT2 99
Adhesion ICAM-1, integrins, lactadherin, MFGES, P-selectin 96, 97
molecules
Antigen ) Human leukocyte antigens class | and Il 96
presentation
Signaling GTPase, HRAS, syntenin-1, Gi2a, 14-3-3 proteins, ARF1, CDC42, NRAS, EHD1, 96— 98
proteins EHD4, RAN, PEBP1, MIF, RRAS2, stomatin, PDCD6
Transport Transferrin receptor 96
Glycosylation Glucose-6-phosphate isomerase, fatty acid synthase, GAPDH, PFKL, peroxire- 96— 98
Enzymes and doxin-1, hexokinase, PGK1, PGAM1, pyruvate kinase M1/M2, ATP-citrate lyase, 100 ’
metabolism ATPase, AST, aldehyde reductase, enolase-1, LDH, aldolase-1, DPP-4
Anti-
Cytokines inflammatory Tumor necrosis factor-alpha (TNF-a) 96
proteins
Anti-apoptotic Apoptosis Alix, thioredoxin peroxidase 97
regulators
Transcriptional ~ Transcription EEF1A1, EEF2, LGALS3, EEF1A2 98
regulators factors
Caveolin-
Caveolae related Caveolin-1, caveolin-3 101
proteins
. Phosphatidylcholine, phosphatidylserine, lysophosphatidylcholine, phosphatidy-
Phospholipids lethanolamine, phosphatidylinositol, lysobisphosphatidic acid 102
Cholesterol — 102
Ceramides — 102, 103
Lipids
Sphingolipids Sphingomyelin, hexosylceramide, lactosylceramide 97
Gangliosides GM1, GM3 104, 105
Other lipids Arachidonic acid, prostaglandin E, 15-d-PGJ2, diacylglycerol, triacylglycerol, 102, 106

hexadecylglycerol
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miRNAs (Let-7, miR-1, miR-15, miR-16, miR-17, miR-18, miR-19b, miR-20,

RNA miR-21, miR-29a, miR-126, miR-143, miR-145, miR-151, miR-155, miR-181, 96, 102
miR-200, miR-214, miR-320, miR-375, miR-382)
Nucleic acids Other RNA
types mRNA, circRNA, mitochondrial RNA, tRNA, spliceosomal RNA, precursor RNA 96, 107
DNA DNA, viral DNA 107

The term exosome was originally introduced in
1981 to describe submicron lipid vesicles secreted
by cells.?” It was later defined more specifically
as vesicles 50-150 nm in size, containing trans-
ferrin receptors and released by maturing blood
reticulocytes.”® Exosomes carry RNA and soluble
proteins and display surface receptors that target
specific recipient cells. The RNA cargo includes
both mRNA and microRNA (miR), capable of mod-
ulating gene expression in recipient cells.’!

EVs include microvesicles and exosomes. Microve-
sicles (100-1000 nm) are shed from the plasma
membrane and carry bioactive molecules like pro-
teins, lipids and RNA. Exosomes (30-150 nm) orig-
inate from intracellular organelles and contain
RNA and proteins in a lipid membrane. The plas-
ma of healthy individuals contains about 10*° EVs
per millilitre.*%93 All cell types, including platelets,
erythrocytes, lymphocytes, endothelial cells and
parenchymal cells, contribute to the EV pool. 8¢

Although exosomal content shares similarities
with other EV types, analytical studies have re-
vealed distinct molecular components (Table 3),°*
which often vary by the originating cell type.’®

Microvesicles and exosomes are implicated in var-
ious cardiovascular conditions, involving endo-
thelial dysfunction and coagulopathies. Elevated
levels of endothelial-derived microvesicles with
procoagulant properties have been identified in
patients with acute coronary syndrome.'°® Assess-
ing endothelial microvesicles may aid in identify-
ing patients at risk for coronary artery disease.!*’
Platelet-derived EVs have a dual role, being both
prothrombotic and angiogenic. While they can
promote clot formation, they also stimulate an-
giogenesis in ischaemic tissues. In a rat model of
chronic myocardial ischaemia, platelet microve-
sicles increased functional capillaries. Following
vascular injury, activated platelets release EVs,
including exosomes and microvesicles.!'%113 Plate-
let-derived EVs interact with angiogenic cells,
modulating SDF-1a/CXCR4 signalling to enhance
their maturation and re-endothelialisation.®¢1*

Cardiomyocytes release exosomes and cardiac fi-
broblasts, which make up most non-myocyte car-
diac cells, influence myocardial function through
signalling molecules. Exosomes from fibroblasts,
containing microRNAs like miR-21, can induce
cardiomyocyte hypertrophy by targeting specif-
ic genes. Inhibiting miR-21 reduced hypertrophy
in a cardiac injury model, emphasising the role of
fibroblast-derived exosomes in this process.!1>118
Non-coding RNAs (RNAs), which make up 98 % of
RNA in the body, include ribosomal RNA, transfer
RNA, microRNA, long non-coding RNA and circu-
lar RNA. MicroRNA regulates gene expression by
binding to messenger RNA, causing degradation
or repression. Long non-coding RNA and circular
RNA affect gene expression through epigenetic
and translational mechanisms. Given their role
in regulating signalling pathways, non-coding
RNAs are being explored as potential therapeutic
agents with systemic delivery strategies.!?*1%!

Current methods for diagnosing acute myocardi-
al infarction (AMI) rely on detecting proteins like
cardiac troponin, which are released during car-
diomyocyte necrosis. Necrosis can also release
protein-bound miRNAs into the bloodstream.
However, exosomes, actively secreted by injured
cells, offer the potential for earlier and more spe-
cific pre-necrotic identification. Released within
minutes of infarction, these vesicles carry a com-
plex cargo, including miRNAs, mRNAs, IncRNAs
and proteins, offering a potential molecular fin-
gerprint of infarction.”?

Therapeutic potential of
exosomes as an alternative to
stem cell therapy

Exosomes, known for decades, show promise in
regenerative medicine, particularly for cardiac
diseases. While simpler than cell therapies, exo-
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some-based treatments may have limited effica-
cy and require further clinical research to deter-
mine their potential in cardiovascular disease.
Exosomes, despite not being living organisms,
contain proteins and can be classified as bio-
logical medicinal products or advanced therapy
products, depending on their source. A regulato-
ry framework for EVs has been proposed by ISEV,
with exosomes potentially commercialised as
cell manufacturing by-products.??%123

Clinical trials on EVs for cardiac conditions are in
early stages. The EV-AMI trial is testing exosome
infusion for AMI safety, while another Iranian
study explores mesenchymal stem cell (MSC)-de-
rived exosomes and mitochondria in coronary
artery bypass grafting (CABG). A French study
is assessing the safety and efficacy of EVs from
cardiac progenitor cells in severe heart failure.
These trials aim to address safety, but challenges
remain, especially with repeated EV administra-
tions.'?*

MSC-derived exosomes influence atherosclerosis
by regulating macrophage polarisation via the
miR-let7/HMGA2/NF-xB pathway, promoting the
anti-inflammatory M2 phenotype and reducing
inflammation. They also decrease macrophage
infiltration into plaques by inhibiting the miR-
let7/IGF2BP1/PTEN axis, limiting macrophage
survival. Additionally, miR-129-5p in MSC-de-
rived exosomes reduces cardiac inflammation
and improves heart function. Exosomes from
endothelial progenitor cells (EPC-Exos) prevent
myocardial fibrosis. While MSC-derived exo-
somes show strong cardioprotective effects,
challenges remain in standardising production,
understanding their interactions with cardiac
tissues and ensuring long-term safety in clinical
applications.!?5-132

Conclusion

s N

e While traditional drugs (eg, [-blockers,
statins) provide substantial clinical benefits
in managing cardiovascular diseases, they
are insufficient in fully preventing myocar-
dial remodelling and heart failure progres-
sion, especially in high-risk patients.

e Stem cell-based approaches for myocardial
regeneration face challenges such as low cell
survival, limited engraftment, incomplete
differentiation and arrhythmogenic risks.
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Clinical outcomes remain variable and re-
quire validation in large-scale trials.

¢ Exosomes offer a promising, cell-free al-
ternative for cardiac repair due to their
anti-inflammatory, pro-angiogenic and an-
ti-apoptotic properties. They hold potential
as biomarkers for early myocardial injury,
though issues such as standardised produc-
tion and long-term safety need resolution.

e The future of cardioprotection lies in com-
bining pharmacotherapy with regenerative
and nanotechnology-based strategies. Per-
sonalised medicine, driven by molecular di-
agnostics and targeted delivery, will further
enhance therapeutic outcomes.

e Further multidisciplinary research is re-
quired to overcome current challenges and
translate exosome-based and regenerative
therapies into standard clinical practice, ul-
timately improving patient outcomes in car-
diovascular disease.
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