GENETIČKI I EPIGENETIČKI MEHANIZMI U PROCESU STARENJA
Sažetak
Starenje je neizbežan proces i u populaciji raste zastupljenost starih ljudi. Shodno tome, razumevanje genetskih faktora i fizioloških mehanizama uključenih u proces normalnog starenja je od sve većeg značaja za održavanje kvaliteta života u starosti. Očuvanje fizioloških funkcija ili „zdravlja“ starih ljudi smanjiće pritisak na zdravstvene sisteme i troškove. U ovom revijalnom radu, u svetlu najnovijih naučnih podataka i hipoteza, ukratko se razmatraju neka ključna pitanja koja se tiču genetike, biologije i fiziologije starenja: šta je starenje, zašto nastaje i koje su mogućnosti odlaganja i usporavanja starenja.
Reference
2. Napoli N, Incalzi RA, De Gennaro G, Marcocci C, Marfella R, Papalia R, at al. Bone fragility in patients with diabetes mellitus: A consensus statement from the working group of the Italian Diabetes Society (SID), Italian Society of Endocrinology (SIE), Italian Society of Gerontology and Geriatrics (SIGG), Italian Society of Orthopaedics and Traumatology (SIOT). Nutr Metab Cardiovasc Dis. 2021;31(5):1375-90.
3. Montero-Odasso M, van der Velde N, Martin FC, Petrovic M, Tan MP, Ryg J, Aguilar-Navarro S, at al. Task Force on Global Guidelines for Falls in Older Adults. World guidelines for falls prevention and management for older adults: a global initiative. Age Ageing. 2022;51(9):afac205.
4. Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1718-44.
5. Barrientos A, Casademont J, Cardellach F, Ardite E, Estivill X, Urbano-Márquez A, at al. Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process. Biochem Mol Med. 1997;62(2):165-71.
6. Dubrovina AS, Kiselev KV. Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biol (Stuttg). 2016;18(2):185-96.
7. Tabibzadeh S. Signaling pathways and effectors of aging. Front Biosci (Landmark Ed). 2021;26(1):50-96.
8. Ray D, Yung R. Immune senescence, epigenetics and autoimmunity. Clin Immunol. 2018;196:59-63.
9. Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells. 2022;11(3):468.
10. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359-67.
11. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.
12. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, at al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9(2):419-46.
13. la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells. 2023;12(8):1163.
14. Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging. 2021;25(7):824-53.
15. Volkert D, Beck AM, Cederholm T, Cruz-Jentoft A, Goisser S, Hooper L, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr. 2019;38(1):10-47.
16. Gallardo-Gómez D, Del Pozo-Cruz J, Noetel M, Álvarez-Barbosa F, Alfonso-Rosa RM, Del Pozo Cruz B. Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res Rev. 2022;76:101591.
17. Yu J, Mathi Kanchi M, Rawtaer I, Feng L, Kumar AP, Kua EH, et al. Differences between multimodal brain-age and chronological-age are linked to telomere shortening. Neurobiol Aging. 2022;115:60-9.
18. Poganik JR, Zhang B, Baht GS, Tyshkovskiy A, Deik A, Kerepesi C, et al. Biological age is increased by stress and restored upon recovery. Cell Metab. 2023;35(5):807-20.
19. Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 2022;73:101507.
20. Galkin F, Zhang B, Dmitriev SE, Gladyshev VN. Reversibility of irreversible aging. Ageing Res Rev. 2019;49:104-14.
21. Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev. 2022;81:101743.
22. Turner KJ, Vasu V, Griffin DK. Telomere Biology and Human Phenotype. Cells. 2019;8(1):73.
23. Gruber HJ, Semeraro MD, Renner W, Herrmann M. Telomeres and Age-Related Diseases. Biomedicines. 2021;9(10):1335.
24. Blackburn EH. Walking the walk from genes through telomere maintenance to cancer risk. Cancer Prev Res (Phila). 2011;4(4):473-5.
25. Zečić A, Braeckman BP. DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells. 2020;9(1):109.
26. Rodríguez-Rodero S, Fernández-Morera JL, Menéndez-Torre E, Calvanese V, Fernández AF, Fraga MF. Aging genetics and aging. Aging Dis. 2011;2(3):186-95.
27. Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. Nat Rev Genet. 2020;21(2):88-101.
28. Smulders L, Deelen J. Genetics of human longevity: From variants to genes to pathways. J Intern Med. 2024;295(4):416-35.
29. Maksimovic N, Novakovic I, Ralic V, Stefanova E. Distribution of Apolipoprotein E gene polymorphism in students amd in high-educated elderly from Serbia. Genetika. 2013;45(3):865-72.
30. de Magalhães JP, Abidi Z, Dos Santos GA, Avelar RA, Barardo D, Chatsirisupachai K, et al. Human Ageing Genomic Resources: updates on key databases in ageing research. Nucleic Acids Res. 2024;52(D1):D900-8.
31. Wu Z, Feng C, Hu Y, Zhou Y, Li S, Zhang S, et al. HALD, a human aging and longevity knowledge graph for precision gerontology and geroscience analyses. Sci Data. 2023;10(1):851.
