POVEZANOST NIVOA LIPIDA TOKOM TRUDNOĆE KOMPLIKOVANE GESTACIONIM DIJABETESOM I RANO PREDVIĐANJE GESTACIONOG DIJABETESA MELITUSA KORISTEĆI VREDNOSTE LIPIDA U PRVOM TROMESEČJU
Sažetak
Trudnoća izaziva složene fiziološke promene, uključujući promene u lipidnim profilima koji su ključni za razvoj fetusa. Prelazak sa anaboličke na kataboličku fazu u trećem trimestru odražava povećanje insulinske rezistencije, olakšavajući razgradnju lipida za fetalnu energiju. Fiziološka trudnoća pokazuje značajne promene lipidnog profila, pri čemu je dislipidemija povezana sa nepovoljnim ishodom kod majke i fetusa. Dislipidemija u trudnoći snažno korelira sa hipertenzivnim poremećajima i gestacijskim dijabetesom. Gestacijski dijabetes melitus (GDM) uvodi karakteristične promene lipida, uključujući povišene trigliceride (TG) i pomeranje ka malim, gustim česticama lipoproteina niske gustine. Mešovita dislipidemija kod GDM, posebno visok TG i nizak HDL-C, povezana je sa nepovoljnim perinatalnim ishodima, naglašavajući važnost procene lipidnog profila. Procena profila lipida, posebno nivoa TG, u ranoj trudnoći pokazuje se vrednim u predviđanju GDM. Odnos TG/HDL-C javlja se kao prospektivni indikator za GDM, pokazujući hvale vrednu osetljivost i specifičnost. Povišeni nivoi TG, čak i pre 28. nedelje, povećavaju rizik od GDM, naglašavajući ulogu lipidnih markera u ranom otkrivanju. Rana predviđanja GDM-a kroz profilisanje lipida u plazmi nude obećavajući put za poboljšanje prenatalne nege. Dok standardizovani markeri i pragovi zahtevaju dalja istraživanja, integrisanje lipidnih profila u rutinske skrininge može optimizovati upravljanje GDM-om, što na kraju ima koristi za ishode majke i fetusa.
Reference
[2] Herrera E. Lipid Metabolism in Pregnancy and its Consequences in the Fetus and Newborn. Endocrine 2002;19:43–56. https://doi.org/10.1385/ENDO:19:1:43.
[3] Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A, et al. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am J Obstet Gynecol 2009;201:482.e1-482.e8. https://doi.org/10.1016/j.ajog.2009.05.032.
[4] Hajar Sharami S, Abbasi Ranjbar Z, Alizadeh F, Kazemnejad E. The relationship of hyperlipidemia with maternal and neonatal outcomes in pregnancy: A cross-sectional study. Int J Reprod Biomed 2019. https://doi.org/10.18502/ijrm.v17i10.5294.
[5] Motoki N, Inaba Y, Shibazaki T, Misawa Y, Ohira S, Kanai M, et al. Impact of maternal dyslipidemia on infant neurodevelopment: The Japan Environment and Children’s Study. Brain Dev 2022;44:520–30. https://doi.org/10.1016/j.braindev.2022.05.002.
[6] Zhang Y, Lan X, Cai C, Li R, Gao Y, Yang L, et al. Associations between Maternal Lipid Profiles and Pregnancy Complications: A Prospective Population-Based Study. Am J Perinatol 2021;38:834–40. https://doi.org/10.1055/s-0039-3402724.
[7] Loke DFM, Viegas OAC, Kek LP, Rauff M, Thai AC, Ratnam SS. Lipid Profiles during and after Normal Pregnancy. Gynecol Obstet Invest 1991;32:144–7. https://doi.org/10.1159/000293016.
[8] Rahnemaei FA, Pakzad R, Amirian A, Pakzad I, Abdi F. Effect of gestational diabetes mellitus on lipid profile: A systematic review and meta-analysis. Open Medicine 2021;17:70–86. https://doi.org/10.1515/med-2021-0408.
[9] Powe CE, Huston Presley LP, Locascio JJ, Catalano PM. Augmented insulin secretory response in early pregnancy. Diabetologia 2019;62:1445–52. https://doi.org/10.1007/s00125-019-4881-6.
[10] Williams C, Coltart TM. ADIPOSE TISSUE METABOLISM IN PREGNANCY: THE LIPOLYTIC EFFECT OF HUMAN PLACENTAL LACTOGEN. BJOG 1978;85:43–6. https://doi.org/10.1111/j.1471-0528.1978.tb15824.x.
[11] Liu Z-X, Kaplowitz N. Role of innate immunity in acetaminophen-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2006;2:493–503. https://doi.org/10.1517/17425255.2.4.493.
[12] Santoleri D, Titchenell PM. Resolving the Paradox of Hepatic Insulin Resistance. Cell Mol Gastroenterol Hepatol 2019;7:447–56. https://doi.org/10.1016/j.jcmgh.2018.10.016.
[13] Applebaum DM, Goldberg AP, Pykälistö OJ, Brunzell JD, Hazzard WR. Effect of estrogen on post-heparin lipolytic activity. Selective decline in hepatic triglyceride lipase. Journal of Clinical Investigation 1977;59:601–8. https://doi.org/10.1172/JCI108677.
[14] Pecks U, Rath W, Kleine-Eggebrecht N, Maass N, Voigt F, Goecke T, et al. Maternal Serum Lipid, Estradiol, and Progesterone Levels in Pregnancy, and the Impact of Placental and Hepatic Pathologies. Geburtshilfe Frauenheilkd 2016;76:799–808. https://doi.org/10.1055/s-0042-107078.
[15] Duttaroy AK, Basak S. Maternal Fatty Acid Metabolism in Pregnancy and Its Consequences in the Feto-Placental Development. Front Physiol 2022;12. https://doi.org/10.3389/fphys.2021.787848.
[16] International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy. Diabetes Care 2010;33:676–82. https://doi.org/10.2337/dc09-1848.
[17] Koukkou E, Watts GF, Lowy C. Serum lipid, lipoprotein and apolipoprotein changes in gestational diabetes mellitus: a cross-sectional and prospective study. J Clin Pathol 1996;49:634–7. https://doi.org/10.1136/jcp.49.8.634.
[18] O’Malley EG, Reynolds CME, Killalea A, O’Kelly R, Sheehan SR, Turner MJ. Maternal obesity and dyslipidemia associated with gestational diabetes mellitus (GDM). European Journal of Obstetrics & Gynecology and Reproductive Biology 2020;246:67–71. https://doi.org/10.1016/j.ejogrb.2020.01.007.
[19] Layton J, Powe C, Allard C, Battista M-C, Doyon M, Bouchard L, et al. Maternal lipid profile differs by gestational diabetes physiologic subtype. Metabolism 2019;91:39–42. https://doi.org/10.1016/j.metabol.2018.11.008.
[20] Ryckman K, Spracklen C, Smith C, Robinson J, Saftlas A. Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG 2015;122:643–51. https://doi.org/10.1111/1471-0528.13261.
[21] Qiu C, Rudra C, Austin M, Williams M. Association of gestational diabetes mellitus and low-density lipoprotein (LDL) particle size. Physiol Res 2007:571–8. https://doi.org/10.33549/physiolres.931073.
[22] Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko A V., Orekhov AN. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxid Med Cell Longev 2017;2017:1–10. https://doi.org/10.1155/2017/1273042.
[23] Li G, Kong L, Zhang L, Fan L, Su Y, Rose JC, et al. Early Pregnancy Maternal Lipid Profiles and the Risk of Gestational Diabetes Mellitus Stratified for Body Mass Index. Reproductive Sciences 2015;22:712–7. https://doi.org/10.1177/1933719114557896.
[24] Wang J, Li Z, Lin L. Maternal lipid profiles in women with and without gestational diabetes mellitus. Medicine 2019;98:e15320. https://doi.org/10.1097/MD.0000000000015320.
[25] Zhu S-M, Zhang H-Q, Li C, Zhang C, Yu J-L, Wu Y-T, et al. Maternal lipid profile during early pregnancy and birth weight: A retrospective study. Front Endocrinol (Lausanne) 2022;13. https://doi.org/10.3389/fendo.2022.951871.
[26] Capobianco G, Gulotta A, Tupponi G, Dessole F, Pola M, Virdis G, et al. Materno-Fetal and Neonatal Complications of Diabetes in Pregnancy: A Retrospective Study. J Clin Med 2020;9:2707. https://doi.org/10.3390/jcm9092707.
[27] Zheng Y, Hou W, Xiao J, Huang H, Quan W, Chen Y. Application Value of Predictive Model Based on Maternal Coagulation Function and Glycolipid Metabolism Indicators in Early Diagnosis of Gestational Diabetes Mellitus. Front Public Health 2022;10. https://doi.org/10.3389/fpubh.2022.850191.
[28] Kosmas CE, Rodriguez Polanco S, Bousvarou MD, Papakonstantinou EJ, Peña Genao E, Guzman E, et al. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023;13:929. https://doi.org/10.3390/diagnostics13050929.
[29] Borrayo G. Tg/Hdl-C Ratio as Cardio-Metabolic Biomarker even in Normal Weight Women. Acta Endocrinologica (Bucharest) 2018;14:261–7. https://doi.org/10.4183/aeb.2018.261.
[30] You Y, Hu H, Cao C, Han Y, Tang J, Zhao W. Association between the triglyceride to high-density lipoprotein cholesterol ratio and the risk of gestational diabetes mellitus: a second analysis based on data from a prospective cohort study. Front Endocrinol (Lausanne) 2023;14. https://doi.org/10.3389/fendo.2023.1153072.
[31] dos Santos-Weiss ICR, Réa RR, Fadel-Picheth CMT, Rego FGM, Pedrosa F de O, Gillery P, et al. The plasma logarithm of the triglyceride/HDL-cholesterol ratio is a predictor of low risk gestational diabetes in early pregnancy. Clinica Chimica Acta 2013;418:1–4. https://doi.org/10.1016/j.cca.2012.12.004.
[32] Wang D, Xu S, Chen H, Zhong L, Wang Z. The associations between triglyceride to high‐density lipoprotein cholesterol ratios and the risks of gestational diabetes mellitus and large‐for‐gestational‐age infant. Clin Endocrinol (Oxf) 2015;83:490–7. https://doi.org/10.1111/cen.12742.
[33] Barat S, Ghanbarpour A, Bouzari Z, Batebi Z. Triglyceride to HDL cholesterol ratio and risk for gestational diabetes and birth of a large-for-gestational-age newborn. Caspian J Intern Med 2018;9:368–75. https://doi.org/10.22088/cjim.9.4.368.
[34] Shen H, Liu X, Chen Y, HE B, Cheng W. Associations of lipid levels during gestation with hypertensive disorders of pregnancy and gestational diabetes mellitus: a prospective longitudinal cohort study. BMJ Open 2016;6:e013509. https://doi.org/10.1136/bmjopen-2016-013509.
[35] Benhalima K, Van Crombrugge P, Moyson C, Verhaeghe J, Vandeginste S, Verlaenen H, et al. Characteristics and pregnancy outcomes across gestational diabetes mellitus subtypes based on insulin resistance. Diabetologia 2019;62:2118–28. https://doi.org/10.1007/s00125-019-4961-7.
[36] Correa PJ, Venegas P, Palmeiro Y, Albers D, Rice G, Roa J, et al. First trimester prediction of gestational diabetes mellitus using plasma biomarkers: a case-control study. J Perinat Med 2019;47:161–8. https://doi.org/10.1515/jpm-2018-0120.
[37] Wu Y-T, Zhang C-J, Mol BW, Kawai A, Li C, Chen L, et al. Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning. J Clin Endocrinol Metab 2021;106:e1191–205. https://doi.org/10.1210/clinem/dgaa899.
[38] Duarte Lau F, Giugliano RP. Lipoprotein(a) and its Significance in Cardiovascular Disease. JAMA Cardiol 2022;7:760. https://doi.org/10.1001/jamacardio.2022.0987.
[39] O’Malley EG, Reynolds CME, Killalea A, O’Kelly R, Sheehan SR, Turner MJ. Maternal obesity and dyslipidemia associated with gestational diabetes mellitus (GDM). European Journal of Obstetrics & Gynecology and Reproductive Biology 2020;246:67–71. https://doi.org/10.1016/j.ejogrb.2020.01.007.
[40] Bao W, Dar S, Zhu Y, Wu J, Rawal S, Li S, et al. Plasma concentrations of lipids during pregnancy and the risk of gestational diabetes mellitus: A longitudinal study. J Diabetes 2018;10:487–95. https://doi.org/10.1111/1753-0407.12563.
[41] Kumru P, Arisoy R, Erdogdu E, Demirci O, Kavrut M, Ardıc C, et al. Prediction of gestational diabetes mellitus at first trimester in low-risk pregnancies. Taiwan J Obstet Gynecol 2016;55:815–20. https://doi.org/10.1016/j.tjog.2016.04.032.
[42] Cui S, Zhu X, Li S, Zhang C. Study on the predictive value of serum hypersensitive C-reactive protein, homocysteine, fibrinogen, and omentin-1 levels with gestational diabetes mellitus. Gynecological Endocrinology 2023;39. https://doi.org/10.1080/09513590.2023.2183046.
[43] Zou J, Liu Y, Shen J, Xue A, Yan L, Zhang Y. The role of 25(
[44] Lowe LP, Perak AM, Kuang A, Lloyd-Jones DM, Sacks DA, Deerochanawong C, et al. Associations of glycemia and lipid levels in pregnancy with dyslipidemia 10–14 years later: The HAPO follow-up study. Diabetes Res Clin Pract 2022;185:109790. https://doi.org/10.1016/j.diabres.2022.109790.
[45] Pei L, Xiao H, Lai F, Li Z, Li Z, Yue S, et al. Early postpartum dyslipidemia and its potential predictors during pregnancy in women with a history of gestational diabetes mellitus. Lipids Health Dis 2020;19:220. https://doi.org/10.1186/s12944-020-01398-1.
[46] Diaz-Santana M V., O’Brien KM, Park Y-MM, Sandler DP, Weinberg CR. Persistence of Risk for Type 2 Diabetes After Gestational Diabetes Mellitus. Diabetes Care 2022;45:864–70. https://doi.org/10.2337/dc21-1430.
