SUPERIOR CERVICAL SYMPATHETIC GANGLION, SATELLITE GLIAL AND NERVE CELLS

  • Jelena Boljanović Univerzitet u Beogradu, Medicinski fakultet, Beograd, Srbija
Keywords: superior cervical sympathetic ganglion, satellite glial cells, nerve cells

Abstract


          The superior cervical sympathetic ganglion (SCSG), oval and fusiform in shape, is the highest and the most prominent of three cervical sympathetic chain ganglia vascularized by the ascending pharyngeal artery, branch of the external carotid artery. The SCSG provides sympathetic postganglionic innervation to the head and neck organs, and via the superior cervical cardiac branches the heart also. The SCSG contains two main types of cells, the satellite glial cells (SGCs) and ganglionic neurons (GNs). SGCs are located in the ganglia of peripheral nevous system (PNS), wrap around cell bodies of GNs in sensory, parasympathetic and sympathetic ganglia, and they have protective and supportive functions. SGCs are activated by inflammation and nerve injury, which enable them to interact with adjacent neurons, as well as they transmit signals to the preganglionic sympathetic synapses. These changes contribute to chronic pain by amplifying the neuronal activity. The important function of SGCs is in the formation of the blood-nervous tissue barrier of the peripheral nervous system, as well as in several pain syndromes commonly encountered in clinical practice. Sympathetic GNs are multipolar nerve cells micromorphologically. Preganglionic sympathetic axon form many axodendritic synapses with GNs dendrites, axosomatic synapses are less numerous. In the SCG the cell bodies of GNs contain neuropeptide Y (NPY), a potent vasoconstrictor, vasoactive intestinal polypeptide (VIP), vasodilator in CNS, but not the substance P (SP). The superior cervical sympathetic ganglion has a possible role in pain mechanisms and important role in controlling cardiovascular functions. Mast cells are normally present in the SCSG, could participate in the inflammatory process and may be involved in the development of pain.

References

1. Lago-Baldaia I, Fernandes VM, Ackerman SD. More than mortar: glia as architects of nervous system development and disease. Front Cell Dev Biol. 2020; 8:611269.
2. Schiera G, Di Liegro CM, Di Liegro I. Cell-to-cell communication in learning and memory: from neuro- and glio-transmission to information exchange mediated by extracellular vesicles. Int J Mol Sci. 2019; 21:266.
3. Benn T, Halfpenny C, Scolding N. Glial cells as targets for cytotoxic immune mediators. Glia 2001; 36:200–11.
4. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014; 258:5–16.
5. Vallejo R, Tilley DM, Vogel L, Benyamin R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract. 2010; 10:167–84.
6. Hossain MZ, Unno S, Ando H, Masuda Y, Kitagawa J. Neuron–glia crosstalk and neuropathic pain: involvement in the modulation of motor activity in the orofacial region. Int J Mol Sci. 2017; 18:2051.
7. Sapio MR, Vazquez FA, Loydpierson AJ, Maric D, Kim JJ, LaPaglia DM, et al. Comparative Analysis of Dorsal Root, Nodose and Sympathetic Ganglia for the Development of New Analgesics. Front Neurosci. 2020; 14:615362.
8. Standring S. (ed). Gray’s anatomy. The anatomical basis of clinical practice. New York: Elsevier. 2021; pp. 60-61, 600-601.
9. Hanani M, Verkhratsky A. Satellite glial cells and astrocytes, a comparative review. Neurochem Res. 2021; 46:2525–37.
10. Andreeva D, Murashova L, Burzak N, Dyachuk V. Satellite Glial Cells: Morphology, functional heterogeneity, and role in pain. Front Cell Neurosci. 2022; 16:1019449.
11. Pannese E. The structure of the perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. Neuron Glia Biol. 2010; 6(1):3–10.
12. Fazliogullari Z, Kilic C, Karabulut AK, Yazar F. A morphometric analysis of the superior cervical ganglion and its surrounding structures. Surg Radiol Anat. 2016; 38(3):299-302.
13. Moriyama H, Shimada K, Goto N. Morphometric analysis of neurons in ganglia: geniculate, submandibular, cervical spinal and superior cervical. Okajimas Folia Anat Jpn. 1995; 72(4):185-190.
14. Tubbs RS, Salter G, Wellons JC 3rd, Oakes WJ. Blood supply of the human cervical sympathetic chain and ganglia. Eur J Morph. 2002; 40(5):283-8.
15. Smoliar E, Smoliar A, Sorkin L, Belkin V. Microcirculatory bed of the human trigeminal nerve. Anat Rec. 1998; 250:245-9.
16. Ćetković M, Štimec BV, Mucić D, Dožić A, Ćetković D, Reçi V, et al. Arterial supply of the trigeminal ganglion, a micromorphological study. Folia Morphol. 2020; 79(1):58-64.
17. Mirčić A, Maliković A, Štimec B, Milosavljević A, Ćetković D, Dožić A, et al. Immunohistochemical analysis of the arterial supply and mast cells of the trigeminal ganglion. Arch Biol Sci. 2021; 73(2):215-22.
18. Dožić A, Ćetković M, Marinković S, Mitrović D, Grujičić M, Mićović M, et al. Vascularisation of the geniculate ganglion. Folia Morphol. 2014; 73(4):414-21.
19. Hanani M, Spray D. Emerging importance of satellite glia in nervous system function and dysfunction. Nature Rev Neurosci. 2020; 21:485-98.
20. Yokota H, Mukai H, Hattori S, Yamada K, Anzai Y, Uno T. MR Imaging of the Superior Cervical Ganglion and Inferior Ganglion of the Vagus Nerve: Structures That Can Mimic Pathologic Retropharyngeal Lymph Nodes. Am J Neuroradiol. 2018; 39(1):170-6.
21. Milosavljević A, Jančić J, Mirčić A, Dožić A, Boljanović J, Milisavljević M, et al. Morphological and functional characteristics of satellite glial cells in the peripheral nervous system. Folia Morphol. 2021; 80(4):745-55.
22. Blum E, Procacci P, Conte V et al. Systematic inflammation alters satellite glial cell function structure. A possible contribution to pain. Neuroscience 2014; 274: 209-17.
23. Mirčić A, Maliković A, Štimec B, Milosavljević A, Ćetković D, Dožić A, et al. Immunohistochemical analysis of the arterial supply and mast cells of the trigeminal ganglion. Arch Biol Sci. 2021; 73(2):215-22.
24. Hanani M, Spray D. Emerging importance of satellite glia in nervous system function and dysfunction. Nature Rev Neurosci. 2020; 21:485–98.
25. Pereira V, Goudet C. Emerging trends in pain modulation by metabotropic glutamate receptors. Front Mol Neurosci. 2019; 11:464.
26. Zhao Z, Hiraoka Y, Ogawa H, Tanaka K. Region-specific deletions of the glutamate transporter GLT1 differentially affect nerve injuryinduced neuropathic pain in mice. Glia 2018; 66:1988–98.
27. Feldman-Goriachnik R, Wu B, Hanani M. Cholinergic responses of satellite glial cells in the superior cervical ganglia. Neurosci Lett. 2018; 671:19–24.
28. Koroleva K, Gafurov O, Guselnikova V, Nurkhametova D, Giniatullina R, Sitdikova G, et al. Meningeal Mast Cells Contribute to ATP-Induced Nociceptive Firing in Trigeminal Nerve Terminals: Direct and Indirect Purinergic Mechanisms Triggering Migraine Pain. Front Cell Neurosci. 2019; 13:195.
29. Kabak M, Onuk B, Selviler Sizer S, Kabak YB. The anatomy of cervical sympathetic ganglia in Saanen goats. Ankara Univ Vet Fak Derg. 2019; 66:177-83.
30. Rytel L, Snarska A, Gonkowski S, Wojtkiewicz J, Szenci O, Sobiech P. Identification of neuropeptide Y in superior cervical ganglion neurons that project to the oesophagus – a combined immunohistochemical labelling and retrograde tracing study in pigs. Acta Vet Hung. 2019; 67(1):98-105.
31. Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci. 2021; 11:151.
32. Kokubun S, Sato T, Yajima T, Ichikawa H. ß-hydroxylase, tyrosine hydroxylase, neuropeptide Y and vasoactive intestinal polypeptide in the human middle cervical ganglion. Tissue and Cell 2019; 58:42-50.
33. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pathoulakis C, Dana R. Neuropeptide Substance P and the Immune Response. Cell Mol Life Sci. 2016; 73(22):4249-64.
34. Happola O, Lakomy M, Majewski M, Wasowicz K, Yanaihara N. Distribution of neuropeptides in the porcine stellate ganglion. Cell Tissue Res. 1993; 274:181-7.
35. Shah T, Bedrin K, Tinsley A. Calcitonin gene relating peptide inhibitors in combination for migraine treatment: A mini-review. Front Pain Res. 2023; 4:1130239.
36. Miyauchi K, Asamoto K, Nojyo Y, Kitagawa Y, Yamada T, Sano K. Differences in morphology and neuropeptide immunoreactivity of superior cervical ganglion neurons that innervate the major salivary glands in rats. Acta Histochem Cytoshem. 2001; 34(6):423-30.
37. Siegenthaler A, Haug M, Eichenberger U, Suter MR, Moriggl B. Block of the superior cervical ganglion, description of a novel ultrasound-guided technique in human cadavers. Pain Med. 2013; 14(5):646-9.
38. Mitsuoka K, Kikutani T, Sato I. Morphological relationship between the superior cervical ganglion and cervical nerves in Japanese cadaver donors. Brain Behav. 2017; 7(2):e00619.
39. Ünsal ÜÜ, Şentürk S, Aygün S. Radiological evaluation of the localization of sympathetic ganglia in the cervical region. Surg Radiol Anat. 2021; 43(8):1249-58.
40. Xie AX, Lee JJ, McCarthy KD. Ganglionic GFAP+ glial Gq-GPCR signaling enhances heart functions in vivo. J C I Insight. 2017; 2(2):e90565.
Published
2025/05/09
Section
Mini pregledni članak