PRIORITIZATION OF CRITERIA FOR PRODUCTION PLANNING SOFTWARE SELECTION USING PICTURE FUZZY PIPRECIA METHOD: A CASE OF THE ORDU PROVİNCE

  • Selçuk KORUCUK Bulancak Kadir Karabaş Vocational School, Department of Logistics Management, Giresun University, Giresun, Turkey, Giresun, Turkey
  • Ahmet AYTEKİN Faculty of Political Sciences, Department of International Trade and Business, Samsun University, Samsun, Turkey

Sažetak


With technological transformation, businesses have begun to carry out more effective production planning and have increasingly needed production planning software programs for short-, medium-, and long-term planning activities. Research shows that production planning software provides significant benefits to businesses in various operational areas such as time management, workforce allocation, production scheduling, overtime control, and inventory management. In addition to enhancing operational efficiency, these software systems also contribute to reducing costs, using resources more effectively, and improving overall organizational performance. However, determining the criteria used in selecting the most suitable production planning software is crucial and requires careful consideration. Within the scope of this study, the criteria used in production planning software selection in manufacturing enterprises were identified and prioritized. For this purpose, the Picture Fuzzy PIPRECIA method was applied. According to the analysis results, among the criteria used in selecting production planning software in manufacturing enterprises, the most important criteria were identified as “Security” and “Reporting and Analysis,” while the least important criteria were found to be “Support and Training” and “Updating and Maintenance.

 

Reference

Akın, B., & Akın, G. (2021). Büyük Veriyle Kaynak ve Kapasite Kısıtları Altında Üretim Planlama ve Çizelgeleme. İzmir İktisat Dergisi, 36(4), 759-770.

Akmal, A., Podgorodnichenko, N., Greatbanks, R., & Everett, A. M. (2018). Bibliometric analysis of production planning and control (1990–2016). Production Planning & Control, 29(4), 333-351.

Arab Momeni, M., & Jain, V. (2025). An integrated model for the production planning and the allocation of locations to items in a warehouse. Annals of Operations Research, 351(1), 1185-1219.

Aydın, A., & Dursun, C. (2022). Pazarlama Ve Üretim Planlaması İlişkisi (Mobilya İmalatçısı Kobi’lere Yönelik Bir Araştırma). Karadeniz Araştırmaları Enstitüsü Dergisi, 8(14), 9-23.

Aytekin, A., & Korucuk, S. (2024). Evaluating performance-based logistics in manufacturing through polytopic fuzzy SWARA: A criterion assessment approach. Journal of Engineering Management and Systems Engineering, 3(2), 65-71.

Bartoszewicz, G., & Wdowicz, M. (2019). Automation of the process of reporting the compliance of the production plan with its execution based on integration of SAP ERP system in connection with Excel spreadsheet and VBA application. Digitalization of Supply Chains, 101-116.

Bründl, P., Stoidner, M., Nguyen, H. G., Baechler, A., & Franke, J. (2023). Challenges and opportunities of software-based production planning and control for engineer-to-order manufacturing. In IFIP International Conference on Advances in Production Management Systems (pp. 67-79). Springer, Cham.

Buğday, E. (2016). Ormancılıkta Üretimin Planlaması ve Hassas Ormancılık Anlayışı. Anadolu Orman Araştırmaları Dergisi, 2(1-2), 54-57.

Caputo, G., Gallo, M., & Guizzi, G. (2009). Optimization of production plan through simulation techniques. WSEAS Transactions on Information Science and Applications, 6(3), 352-362.

Chen, Z., & Li, L. (2013). Information support technologies of integrated production planning and control for OEM driven networked manufacturing: Framework, technologies and case. Journal of Enterprise Information Management, 26(4), 400-426.

Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets-a new concept for computational intelligence problems. In 2013 third world congress on information and communication technologies (WICT 2013) (pp. 1-6). IEEE.

Ediz, Ç., & Turan, A. H. (2020). Çok Değişkenli Üretim Planlama Kararlarında Bilişim Teknolojisi Uygulamaları. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 19-30.

Ellwein, C., Elser, A., & Riedel, O. (2019). Production planning and control systems–a new software architecture Connectivity in target. Procedia CIRP, 79, 361-366.

Elyasi, M., Altan, B., Ekici, A., Özener, O. Ö., Yanıkoğlu, İ., & Dolgui, A. (2024). Production planning with flexible manufacturing systems under demand uncertainty. International Journal of Production Research, 62(1-2), 157-170.

Feng, P., Zhang, J., Wu, Z., & Yu, D. (2011). An improved production planning method for process industries. International journal of production research, 49(14), 4223-4243.

Gansterer, M., Almeder, C., & Hartl, R. F. (2014). Simulation-based optimization methods for setting production planning parameters. International Journal of Production Economics, 151, 206-213.

Görçün, Ö. F., Mishra, A. R., Aytekin, A., Simic, V., & Korucuk, S. (2024). Evaluation of Industry 4.0 strategies for digital transformation in the automotive manufacturing industry using an integrated fuzzy decision-making model. Journal of Manufacturing Systems, 74, 922-948.

Hees, A., & Reinhart, G. (2015). Approach for production planning in reconfigurable manufacturing systems. Procedia Cirp, 33, 70-75.

Jacobs, F. Robert, & Chase, Richard B. (2008). Operations and Supply Management: The Core. Indiana: McGraw-Hill/Irwin.

Junior, M. L., & Filho, M. G. (2012). Production planning and control for remanufacturing: literature review and analysis. Production Planning & Control, 23(6), 419-435.

Karabulut, M., & Deste, M. (2021). Bütünleşik Üretim Planlamasının Hedef Programlama Tekniğiyle Optimizasyonu ve Tekstil Sektöründe Bir Uygulama. Harran Üniversitesi Mühendislik Dergisi, 6(3), 171-182.

Karamaşa, Ç., Korucuk, S., & Demir, E. (2022). Rating Risk Factors Related to Dangerous Goods Transportation and Selecting an Ideal Warehouse Location. In Cases on Supply Chain Management and Lessons Learned From COVID-19 (pp. 164-184). IGI Global Scientific Publishing.

Koçak, A., & Yıldız, A. (2022). Üretim Planlama ve Kontrol Süreçlerinde Dijital İkiz Teknolojisinin Kullanılması: Tekstil Sektöründe Bir Uygulama. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji. Journal of Science, 10(4), 711-732.

Korucuk, S., Aytekin, A., Ecer, F., Pamucar, D. S. S., & Karamaşa, Ç. (2023). Assessment of ideal smart network strategies for logistics companies using an integrated picture fuzzy LBWA–CoCoSo framework. Management Decision, 61(5), 1434-1462.

Kumar, S. A. & Suresh N. (2009). Production and operations management. New Age International Pvt Ltd Publishers, New Delhi.

Oluyisola, O. E., Bhalla, S., Sgarbossa, F., & Strandhagen, J. O. (2022). Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study. Journal of Intelligent Manufacturing, 33(1), 311-332.

Organ, A., Ertuğrul, İ., & Gürel, S. G. (2013). Bütünleşik Üretim Planlamasının Hedef Programlamayla Optimizasyonu ve Bütünleşik Üretim Planlamasının Hedef Programlamayla Optimizasyonu ve Denizli İmalat Sanayiinde Uygulanması. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 6(1), 96-115.

Ramayah, T., & Lo, M. C. (2007). Impact of shared beliefs on “perceived usefulness” and “ease of use” in the implementation of an enterprise resource planning system. Management Research News, 30(6), 420-431.

Sharma, H. (2019). Production Planning And Control. BookRix, Knoxville.

Sheikhkhoshkar, M., El-Haouzi, H. B., Aubry, A., Hamzeh, F., & Sakikhales, M. (2024). An innovative integrated framework for multi-level production planning and control systems in construction. Developments in the Built Environment, 19, 100524.

Stević, Ž., Karamaşa, Ç., Demir, E., & Korucuk, S. (2025). Assessing sustainable production under circular economy context using a novel rough-fuzzy MCDM model: A case of the forestry industry in the Eastern Black Sea region. Journal of Enterprise Information Management, 38(1), 261-291.

Telsang, M.T. (2018). Industrial engineering and production management. S. Chand Publishing, India.

Vogel, T., Almada-Lobo, B., & Almeder, C. (2017). Integrated versus hierarchical approach to aggregate production planning and master production scheduling. OR spectrum, 39(1), 193-229.

Wang, X., Li, D., O’brien, C., & Li, Y. (2010). A production planning model to reduce risk and improve operations management. International Journal of Production Economics, 124(2), 463-474.

Objavljeno
2025/12/08
Rubrika
Originalni naučni članak