Correlation analysis of cognitive dysfunction and fluctuations in serum fibroblast growth factor 21 (FGF21) levels in the overweight group

Cognitive dysfunction and fluctuations in serum FGF21)

  • Guotian Lyu Dongyang Hospital of Traditional Chinese Medicine
  • Xiaoli Lu Dongyang Hospital of Traditional Chinese Medicine
  • Qichang Meng Peking University First Hospital
  • Yanyan Liu Peking University First Hospital
  • Shuyan Liu The People's Hospital of Danyang (Affiliated Danyang Hospital of Nantong University)
  • Jieyi Liu No. 905 Hospital of People's Liberation Army Navy Affiliated to Naval Medical University
  • Peng Dong No. 905 Hospital of People's Liberation Army Navy Affiliated to Naval Medical University
Keywords: Obese teenagers, Cognitive function, Behavioral test, Fibroblast growth factor 21 (FGF21)

Abstract


Objective: To explore the changing characteristics of cognitive function in overweight/obese (OWO) adolescents and analyze its relationship with the level of serum fibroblast growth factor 21 (FGF21).

Methods: A total of 175 adolescents were selected and divided into a normal body mass index (BMI) group (n=50), an overweight BMI group (n=50), and an obese BMI group (n=75). All participants underwent assessment of anthropometric indicators (height, weight, waist circumference, BMI Z score). Fasting venous blood was collected to measure the level of serum FGF21 (by enzyme-linked immunosorbent assay (ELISA)), as were metabolic parameters such as fasting plasma glucose (FPG), fasting insulin (FINS), glycated hemoglobin (HbA1c), and lipid profiles (TC, TG, LDL-C, HDL-C). Overall cognitive function was evaluated via the Chinese version of the Montreal Cognitive Assessment Foundation Scale (MoCA-B), executive function was evaluated via the Wisconsin Card Sorting Test (WCST) (with a focus on analyzing the number of persistent errors/PE and the number of completed classifications/CC), and working memory was evaluated via the number span test (DST). Independent sample t tests or Mann‒Whitney U tests were used to compare the differences between groups. Pearson or Spearman correlation analysis was used to explore the relationships between serum FGF21 levels and cognitive indicators and metabolic parameters. Multiple linear regression was used to analyze the independent association between serum FGF21 and cognitive function scores (after adjusting for potential confounding factors such as age, sex, BMI Z Score, and HOMA-IR).

Results: Compared with those of the normal individuals, the systolic blood pressure, diastolic blood pressure, fasting blood glucose, glycated hemoglobin and triglyceride levels of the adolescents in the obese group were greater (all P<0.05). Under the consistent or inconsistent stimulation conditions of the Flanker task, there was no statistically significant difference in the ACC between any two groups of adolescents. Compared with those in the normal body type group and the overweight group, the reaction time of adolescents in the obese group was prolonged (all P<0.05). In the n-back task, there was no statistically significant difference in the ACC between any two groups of adolescents. However, the response time of adolescents in the obese group in the 1-back and 2-back tasks was longer than that in the normal body type group and the overweight group (all P<0.05). Compared with those in the normal body type group, the serum FGF21 levels of adolescents in the obese group were greater (P=0.000). The results of the partial correlation analysis revealed that the reaction time of adolescents in the Flanker and n-back tasks was correlated with their BMI, body fat mass, waist circumference, waist‒hip ratio, FGF21 level, etc. (all P<0.05). Multiple linear regression analysis further confirmed that BMI was associated with prolonged response time in cognitively related behavioral tasks in adolescents (all P<0.05), and the level of FGF21 was correlated with the ACC in the 2-back task (P=0.000) and the response time to inconsistent stimuli (P=0.048).

Conclusion: Overweight adolescents have significant cognitive impairment, with significantly elevated serum FGF21 levels, and elevated FGF21 levels are independently associated with poorer overall cognitive and executive functions.

References

1.Salman HB, Salman MA, Yildiz Akal E. The effect of omega-3 fatty acid supplementation on weight loss and cognitive function in overweight or obese individuals on weight-loss diet. Nutr Hosp. 2022 Aug 25;39(4):803-813. English. doi: 10.20960/nh.03992. PMID: 35815739.
2.Xu X, Xu Y, Shi R. Association between obesity, physical activity, and cognitive decline in Chinese middle and old-aged adults: a mediation analysis. BMC Geriatr. 2024 Jan 11;24(1):54. doi: 10.1186/s12877-024-04664-4. PMID: 38212676; PMCID: PMC10785530.
3.Norris T, Salzmann A, Henry A, Garfield V, Pinto Pereira SM. The relationship between adiposity and cognitive function: a bidirectional Mendelian randomization study in UK Biobank. Int J Epidemiol. 2023 Aug 2;52(4):1074-1085. doi: 10.1093/ije/dyad043. Erratum in: Int J Epidemiol. 2023 Aug 2;52(4):1297. doi: 10.1093/ije/dyad070. PMID: 37029912; PMCID: PMC10396406.
4.Feng J, Teng Z, Yang Y, Liu J, Chen S. Effects of semaglutide on gut microbiota, cognitive function and inflammation in obese mice. PeerJ. 2024 Aug 12;12:e17891. doi: 10.7717/peerj.17891. PMID: 39148685; PMCID: PMC11326427.
5.Zhu X, Ding L, Zhang X, Xiong Z. Association of cognitive frailty and abdominal obesity with cardiometabolic multimorbidity among middle-aged and older adults: A longitudinal study. J Affect Disord. 2023 Nov 1;340:523-528. doi: 10.1016/j.jad.2023.08.067. Epub 2023 Aug 16. PMID: 37595895.
6.Keawtep P, Sungkarat S, Boripuntakul S, Sa-Nguanmoo P, Wichayanrat W, Chattipakorn SC, Worakul P. Effects of combined dietary intervention and physical-cognitive exercise on cognitive function and cardiometabolic health of postmenopausal women with obesity: a randomized controlled trial. Int J Behav Nutr Phys Act. 2024 Mar 5;21(1):28. doi: 10.1186/s12966-024-01580-z. PMID: 38443944; PMCID: PMC10913568.
7.Qiu X, Kuang J, Huang Y, Wei C, Zheng X. The association between Weight-adjusted-Waist Index (WWI) and cognitive function in older adults: a cross-sectional NHANES 2011-2014 study. BMC Public Health. 2024 Aug 8;24(1):2152. doi: 10.1186/s12889-024-19332-w. PMID: 39118100; PMCID: PMC11308487.
8.Booranasuksakul U, Macdonald IA, Stephan BCM, Siervo M. Body Composition, Sarcopenic Obesity, and Cognitive Function in Older Adults: Findings From the National Health and Nutrition Examination Survey (NHANES) 1999-2002 and 2011-2014. J Am Nutr Assoc. 2024 Aug;43(6):539-552. doi: 10.1080/27697061.2024.2333310. Epub 2024 Apr 2. PMID: 38564377.
9.Lan X, Wang C, Li W, Chao Z, Lao G, Wu K, Li G, Ning Y, Zhou Y. The association between overweight/obesity and poor cognitive function is mediated by inflammation in patients with major depressive disorder. J Affect Disord. 2022 Sep 15;313:118-125. doi: 10.1016/j.jad.2022.06.073. Epub 2022 Jun 28. PMID: 35777493.
10.Shen J, Li J, Hua Y, Ding B, Zhou C, Yu H, Xiao R, Ma W. Association between the Erythrocyte Membrane Fatty Acid Profile and Cognitive Function in the Overweight and Obese Population Aged from 45 to 75 Years Old. Nutrients. 2022 Feb 21;14(4):914. doi: 10.3390/nu14040914. PMID: 35215564; PMCID: PMC8878599.
11.Gong HJ, Tang X, Chai YH, Qiao YS, Xu H, Patel I, Zhang JY, Simó R, Zhou JB. Relationship Between Weight-Change Patterns and Cognitive Function: A Retrospective Study. J Alzheimers Dis. 2023;91(3):1085-1095. doi: 10.3233/JAD-220788. PMID: 36565117.
12.Wu L, Zheng Y, Liu J, Luo R, Wu D, Xu P, Wu D, Li X. Comprehensive evaluation of the efficacy and safety of LPV/r drugs in the treatment of SARS and MERS to provide potential treatment options for COVID-19. Aging (Albany NY). 2021 Apr 20;13(8):10833-10852. doi: 10.18632/aging.202860. Epub 2021 Apr 20. PMID: 33879634; PMCID: PMC8109137.
13.Babateen AM, Shannon OM, O'Brien GM, Okello E, Smith E, Olgacer D, Koehl C, Fostier W, Wightman E, Kennedy D, Mathers JC, Siervo M. Incremental Doses of Nitrate-Rich Beetroot Juice Do Not Modify Cognitive Function and Cerebral Blood Flow in Overweight and Obese Older Adults: A 13-Week Pilot Randomized Clinical Trial. Nutrients. 2022 Mar 2;14(5):1052. doi: 10.3390/nu14051052. PMID: 35268027; PMCID: PMC8912345.
14.Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines. 2022 Sep 10;10(9):2248. doi: 10.3390/biomedicines10092248. PMID: 36140350; PMCID: PMC9496572.
15.Borkertienė V, Valonytė-Burneikienė L. Normal Weight 6-12 Years Boys Demonstrate Better Cognitive Function and Aerobic Fitness Compared to Overweight Peers. Medicina (Kaunas). 2022 Mar 14;58(3):423. doi: 10.3390/medicina58030423. PMID: 35334599; PMCID: PMC8953475.
16.Li W, Lin S, Yue L, Fang Y, Xiao S. Sex Differences in Obesity and Cognitive Function in Chinese Elderly Patients With Chronic Schizophrenia. Front Endocrinol (Lausanne). 2022 Apr 1;13:742474. doi: 10.3389/fendo.2022.742474. PMID: 35432207; PMCID: PMC9011101.
17.Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines. 2023 Jun 29;11(7):1861. doi: 10.3390/biomedicines11071861. PMID: 37509501; PMCID: PMC10377220.
18.Zhang Y, Huang B, Yang W, Zhong S, Lai S, Zhao H, He J, Cai S, Lv S, Wang C, Jia Y; Chinese Obesity and Metabolic Surgery Collaborative. Correlations Between Endocrine Hormones and Cognitive Function in Patients with Obesity: a Cross-sectional Study. Obes Surg. 2022 Jul;32(7):2299-2308. doi: 10.1007/s11695-022-06076-y. Epub 2022 Apr 29. PMID: 35486288.
19.Kouvari M, M D'Cunha N, Tsiampalis T, Zec M, Sergi D, Travica N, Marx W, McKune AJ, Panagiotakos DB, Naumovski N. Metabolically Healthy Overweight and Obesity, Transition to Metabolically Unhealthy Status and Cognitive Function: Results from the Framingham Offspring Study. Nutrients. 2023 Mar 5;15(5):1289. doi: 10.3390/nu15051289. PMID: 36904288; PMCID: PMC10004783.
20.Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs. 2022 Jan 1;33(1):e590-e603. doi: 10.1097/CAD.0000000000001189. PMID: 34338240; PMCID: PMC8670349.
21.de Vargas LDS, Jantsch J, Fontoura JR, Dorneles GP, Peres A, Guedes RP. Effects of Zinc Supplementation on Inflammatory and Cognitive Parameters in Middle-Aged Women with Overweight or Obesity. Nutrients. 2023 Oct 17;15(20):4396. doi: 10.3390/nu15204396. PMID: 37892471; PMCID: PMC10609714.
22.Weng XF, Liu SW, Li M, Zhang Y, Zhang YC, Liu CF, Zhu JT, Hu H. Relationship between sarcopenic obesity and cognitive function in patients with mild to moderate Alzheimer's disease. Psychogeriatrics. 2023 Nov;23(6):944-953. doi: 10.1111/psyg.13015. Epub 2023 Aug 31. PMID: 37652079.
23.Wang J, Li L, Li L, Shen Y, Qiu F. Lycopene alleviates age-related cognitive deficit by activating liver-brain fibroblast growth factor-21 signaling. Redox Biol. 2024 Nov;77:103363. doi: 10.1016/j.redox.2024.103363. Epub 2024 Sep 19. PMID: 39307046; PMCID: PMC11447408.
24.Zhang Y, Wang Y, Li Y, Pang J, Höhn A, Dong W, Gao R, Liu Y, Wang D, She Y, Guo R, Liu Z. Methionine restriction alleviates diabetes-associated cognitive impairment via activation of FGF21. Redox Biol. 2024 Nov;77:103390. doi: 10.1016/j.redox.2024.103390. Epub 2024 Oct 8. PMID: 39383602; PMCID: PMC11492615.
25.Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs. 2022 Oct 1;33(9):943-959. doi: 10.1097/CAD.0000000000001319. Epub 2022 Aug 9. PMID: 35946526; PMCID: PMC9481295.
26.Tang M, Cheng S, Wang L, Tang H, Liu T, Zhao T, Dang R. Decreased FGF19 and FGF21: possible underlying common pathogenic mechanism of metabolic and cognitive dysregulation in depression. Front Neurosci. 2023 May 17;17:1165443. doi: 10.3389/fnins.2023.1165443. PMID: 37266540; PMCID: PMC10229787.
27.Zhang Y, Tang W, Tang B, Fan K, Zhao K, Fang X, Lin H. Altered mitochondrial lymphocyte in overweight schizophrenia patients treated with atypical antipsychotics and its association with cognitive function. Front Immunol. 2024 Jan 3;14:1325495. doi: 10.3389/fimmu.2023.1325495. PMID: 38235140; PMCID: PMC10791827.
28.Chen L, Hou Y, Sun Y, Peng D. Association of obesity indicators with cognitive function among US adults aged 60 years and older: Results from NHANES. Brain Behav. 2024 Sep;14(9):e70006. doi: 10.1002/brb3.70006. PMID: 39262162; PMCID: PMC11391027.
29.Banjevic B, Aleksic D, Aleksic Veljkovic A, Katanic B, Masanovic B. Differences between Healthy-Weight and Overweight Serbian Preschool Children in Motor and Cognitive Abilities. Int J Environ Res Public Health. 2022 Sep 9;19(18):11325. doi: 10.3390/ijerph191811325. PMID: 36141598; PMCID: PMC9517162.
Annesi JJ. Cognitive Behavior-Based Programming to Increase Physical Activity and Control Overweight/Obesity in Youth: An 18-Year Research Program Informing Novel Curricula. Perm J. 2022 Sep 14;26(3):114-127. doi: 10.7812/TPP/22.022. Epub 2022 Aug 8. PMID: 35941727; PMCID: PM
Published
2025/08/12
Section
Original paper