Red clover and plant growth promoting bacteria: The combination that can speed up soil remediation rate

  • Vera M Karlicic Univerzitet u Beogradu, Poljoprivredni fakultet,Katedra za ekološku mikrobiologiju
  • Danka Radic Edukons Univerzitet, Fakultet zaštite životne sredine
  • Jelena Jovičić Petrović Univerzitet u Beogradu, Poljoprivredni fakultet, Odsek za melioracije zemljišta
  • Vera Raičević Univerzitet u Beogradu, Poljoprivredni fakultet, Odsek za melioracije zemljišta

Sažetak


Abstract: Phytoremediation is widely accepted method for eco-friendly and cost-effective soil remediation. Plant remediation mechanisms are strongly supported by microorganisms inhabiting root zone. Rhizosphere microorganisms are employed through bioremediation process and they stimulate pollutants degradation and speed up remediation kinetics. The key factor for successful phyto/bioremediation is the adequate choice of plant species and bacterial strains. In this study, red clover (Trifolium pretense L.) was inoculated with several plant growth promoting bacteria and sown in the substrate contaminated with PAHs, PCBs and organotin substances. The aim was to determine if selected PGPB strains can promote growth of red clover in substrate contaminated with several organic pollutants. The influence of bacteria on red clover growth (height, root length and biomass) was monitored during tree mounts experimental period. The highest improvements of seedlings height were noted in treatment with Bacillus amyloliquefaciens D5 ARV and Pseudomonas putida P1 ARV. Root growth was positively affected by Serratia liquefaciens Z-I ARV. The same isolates significantly affected biomass production. Those isolates caused total biomass increase of 70%, 48% and 33% compared to control. Obtained results confirmed that inoculation with several PGPB strains promote red clover growth and have potential to improve red clover remediation potential

Biografije autora

Vera M Karlicic, Univerzitet u Beogradu, Poljoprivredni fakultet,Katedra za ekološku mikrobiologiju

Katedra za ekolšku mikrobiologiju,

naučni saradnik

Danka Radic, Edukons Univerzitet, Fakultet zaštite životne sredine
docent
Jelena Jovičić Petrović, Univerzitet u Beogradu, Poljoprivredni fakultet, Odsek za melioracije zemljišta

Katedra za ekolšku mikrobiologiju,

docent

Vera Raičević, Univerzitet u Beogradu, Poljoprivredni fakultet, Odsek za melioracije zemljišta
Katedra za ekolšku mikrobiologiju,

redovni prfesor

Reference

Ahmad, I., Imran, M., Hussain, M.B., & Hussain, S. (2017). Remediation of organic and inorganic pollutants from soil: The role of plantbacteria partnership. In N.A. Anjum (Ed.), Chemical Pollution Control with Microorganisms. (pp. 197-243). New York: Nova Science Publishers, Inc.

Anderson, G.R. (1958). Ecology of azotobacter in soils of the Palouse region: I. Occurrence. Soil Science, 86, 57-62.

Boer, J., & Wagelmans, M. (2016). Polycyclic Aromatic Hydrocarbons in Soil - Practical Options for Remediation. Clean - Soil, Air, Water, 44, 1-6.

Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K.D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46, 7-21.

De Souza, R., Ambrosini, A., & Passaglia, L.M.P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38, 401-419.

Eskandary, S., Tahmourespour, A., Hoodaji, M., & Abdollahi, A. (2017). The synergistic use of plant and isolated bacteria to clean up polycyclic aromatic hydrocarbons from contaminated soil. Journal of Environmental Health Science and Engineering, 15, 1-8.

Ficko, S.A., Rutter, A., & Zeeb, B.A. (2010). Potential for phytoextraction of PCBs from contaminated soils using weeds. Science of The Total Environment, 408, 3469-3476.

Gamalero, E., & Glick, B.R. (2015). Bacterial Modulation of Plant Ethylene Levels. Plant Physiology, 169, 13-22.

Hou, J., Liu, W., Wanga, B., Wang, Q., Luo, Y., & Franks, A.E. (2015). PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere, 138, 592-598.

Ite, A.E., & Ibok, U.J. (2019). Role of Plants and Microbes in Bioremediation of Petroleum Hydrocarbons Contaminated Soils. International Journal of Environmental Bioremediation & Biodegradation, 7, 1-19.

Jeelani, N., Yang, W., Xu, L., Qiao, Y., An, S., & Leng, X. (2017). Phytoremediation potential of Acorus calamus in soils cocontaminated with cadmium and polycyclic aromatic hydrocarbons. Scientific REPOrts, 7, 1-9.

Jiang, Y., Lei, M., Duan, L., & Longhurst, P. (2015). Integrating phytoremediation with biomass valorisation and critical element recovery: A UK contaminated land perspective. Biomass and Bioenergy, 83, 328-339.

Jing, R., Fusi, S., & Kjellerup, B.V. (2018). Remediation of Polychlorinated Biphenyls (PCBs) in Contaminated Soils and Sediment: State of Knowledge and Perspectives. Frontiers in Environmental Science, 6:79.

Jovičić Petrivić, J., Karličić, V., Radić, D., Jovanović, Lj., Kiković, D., & Raičević, V. (2014). Microbial Biodiversity in PAH and PCB Contaminated Soil as a Potential for in Situ Bioremediation. Proceedings of the 9th Conference on Sustainable Development of Energy, Water and Environment Systems (pp. 1-10). Venice/Istanbul.

Karličić, V., Jovičić Petrivić, J., Radić, D., Lalević, B., Raičević, V., & Jovanović, Lj. (2014). In situ bioremediation of soil polluted with organotin substrances. In M. Vrvić, Z. Cokić, & Lj. Tanasijević (Eds.), Proceedings of the Soil 2014: Planning and and land use and landfills in terms of sustainable development and new remediation technologies (pp. 43-50). Zrenjanin, Republika Srbija.

Karličić, V., Radić, D., Jovičić-Petrović, J., Lalević, B., Jovanović, Lj., Kiković, D., & Raičević, V. (2016). Isolation and characterization of bacteria and yeasts from contaminated soil. Journal of Agricultural Sciences, 61, 247-256.

Karličić, V., Radić, R., Jovičić-Petrović, J., Lalević, B., Morina, F., Golubović Ćurguz, V., & Raičević, V. (2017). Use of overburden waste for London plane (Platanus × acerifolia) growth: the role of plant growth promoting microbial consortia. iForest-Biogeosciences and Forestry, 10, 692-699.

Mesa, V., Navazas, A., González-Gil, R.,González, A., Weyens, N., Lauga, B., Gallego, JLR., Sánchez, J., & Peláez, A.I. (2017). Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Applied and Environmental Microbiology, 83, 411-416.

O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance:

issues and opportunities. Applied Microbiology and Biotechnology, 100, 5729-5746.

Pinto, A.P., de Varennes, A., Dias, C.M.B., & Lopes, M.E. (2018). Microbial-Assisted Phytoremediation: A Convenient Use of Plant and Microbes to Clean Up Soils. In A.A. Ansari, S.S. Gill, R. Gill, G.R. Lanza, & L. Newman (Eds.), Phytoremediation, Volume 6: Management of Environmental Contaminants. (pp. 21-87). Cham: Springer International Publishing AG.

Rohrbacher, F., & St-Arnaud, M., (2016). Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation, Agronomy, 6, 1-27.

Rostami, S., Azhdarpoor, A., & Samaei, M.R. (2017): Removal of Pyrene from Soil Using Phytobioremediation (Sorghum Bicolor-Pseudomonas). Journal of Health Scope, 6, e62153.

Skála, J., Vácha, R., & Čupr, P. (2018). Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed? International Journal of Environmental Research and Public Health, 15, 1-16.

Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A.C. (2017). Perspectives and Challenges of Microbial Application for Crop Improvement. Frontiers in Plant Science, 8, 49.

Teixeria, D.A., Alfenas, A.C., Mafia, R.G., Ferreira, E.M., Siqueira, L., Maffia, L.A., Mounteer, A.H. (2007). Rizobacterial promotion of eucalypt rooting and growth. Brazilian Journal of Microbiology, 38,118-123.

Waigi, M.G., Sun, K., Gao, Y. (2017) Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution. Trends in Biotechnology, 35, 883-899.

Objavljeno
2020/06/30
Rubrika
Originalni naučni članak