DEVELOPMENT OF A DEVICE FOR COOLING LADLE LINERS FOR CASTING LADLES
Abstract
This article focuses on the controlled cooling process of the linings of ferroalloy production ladles. Analysis of the operating conditions of the linings revealed that temperature stresses during heating and cooling are the main cause of damage to the linings of high-temperature units. At the enterprise in question, the cooling process is uncontrolled when the lining is exposed to the workshop atmosphere. This leads to cracks forming in the lining and its subsequent destruction. Cooling schedules have been developed for the ladles under consideration, during which the resulting thermal stresses do not damage the lining. A device has been developed for the ladle liners to ensure the cooling process is kept on schedule. Incomplete liner replacement involves cooling the ladle by supplying a mixture of combustion gases from the ladle heating booth and air. The liner is cooled using a mixture of three media: ambient air from the workshop, combustion products from the ladle heating stand, and combustion products from the ferroalloy gas burnt in the burner. A cooling schedule for casting ladle liners has been developed to ensure that thermal stresses do not exceed the strength limit of the refractory materials. At the same time, the cooling time is reduced from 19 hours 30 minutes to 6 hours 50 minutes. The developed device enables the outer and inner walls of the lining to be cooled, secondary resources (ferroalloy gas and combustion products from the ladle heating stand) to be used.
References
Wilson D., Guillin-Estrada., Rafael Albuja., Ivan B. Dávila., Bernardo S. Rueda., Lesme Corredor., Arturo Gonzalez-Quiroga., Heriberto Maury. (2022). Transient operation effects on the thermal and mechanical response of a large-scale rotary kiln, Results in Engineering, Volume 14. https://doi.org/10.1016/j.rineng.2022.100396.
Pagliosa, Carlos & Resende, C & Da Luz, Ana & Pandolfelli, Victor. (2017). Designing stronger and tougher MgO-C bricks for basic oxygen furnace (BOF). Refractories World Forum. 9. 89-93. https://www.researchgate.net/publication/314522579
Kukartsev, V.A., Kukartsev, V.V., Tynchenko, V.S., Kurashkin, S.O., Sergienko, R.B., Tynchenko, S.V., Panfilov, I.A., Eremeeva, S.V., Panfilova, T.A. (2023). Study of the Influence of the Thermal Capacity of the Lining of Acid Melting Furnaces on Their Efficiency. Metals, 13, 337. https://doi.org/10.3390/met13020337.
Nikiforov, A., Prikhodko, Y., Kucherbayev, M., Kinzhibekova, A., Karmanov, A., & Uakhit, N. (2024). Analysis of the thermal performance of the lining and the reasons for its destruction in petroleum coke calcination furnaces. EUREKA: Physics and Engineering, (5), 125-135. https://doi.org/10.21303/2461-4262.2024.003329.
Prikhodko, E., Nikiforov, A., Kinzhibekova, A., Paramonov, A., Aripova, N., Karmanov, A. (2023). Analysis of the Effect of Temperature on the Ultimate Strength of Refractory Materials. Energies, 16, 6732. https://doi.org/10.3390/en16186732.
VLČEK, Jozef., JANČAR, Dalibor., BURDA, Jiří., KLÁROVÁ, Miroslava., VELIČKA, Marek et al. (2016). Measurement the thermal profile of steelmaking ladle with subsequent evaluation the reasons of lining damage. Online. Archives of Metallurgy and Materials. roč. 61, č. 1, s. 279-282. ISSN 2300-1909. Dostupné z: https://doi.org/10.1515/amm-2016-0053
Demeter, J., Buľko, B., Demeter, P., Hrubovčáková, M. (2023). Evaluation of Factors Affecting the MgO–C Refractory Lining Degradation in a Basic Oxygen Furnace. Appl. Sci. 13, 12473. https://doi.org/10.3390/app132212473
Bareiro W. G., Sotelino E. D., de Andrade Silva F. (2020) Numerical modelling of the thermo-mechanical behaviour of refractory concrete lining // Magazine of Concrete Research. Vol. 73. No. 20, 1048-1059. http://dx.doi.org/10.1680/jmacr.19.00371
Fang L., Su F., Kang Z., Zhu H. (2024). Finite element (FE) analysis of thermal stress in production process of multi-layer lining ladle. Case Studies in Thermal Engineering, Volume 57. https://doi.org/10.1016/j.csite.2024.104307.
Aripova, N.M., Nikiforov, A.S., Paramonov, A.M. et al. (2023). Assessment of Reliability and Technical Risks in the Operation of Heat Engineering Units. Refract Ind Ceram 64, 206–213. https://doi.org/10.1007/s11148-023-00827-9
Schmitt, N., Berthaud, Y., Hernandez, J. F., Meunier, P., & Poirier, J. (2004). Damage of monolithic refractory linings in steel ladles during drying. British Ceramic Transactions, 103(3), 121–133. https://doi.org/10.1179/096797804225012873
Prikhod’ko, E.V. (2021). Analysis of Methods for Heating the Lining of High-Temperature Units. Refract. Ind. Ceram., 62, 463–466. https://doi.org/10.1007/s11148-021-00625-1
Korneev S.V. (2014). Influence of lining thermal performance in electric-arc furnaces on power consumption. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. (3):66–74. (In Russ.)
Krasnyansky, M.V., Katz, Y.L. & Bershitsky, I.M. (2012). Efficiency of electrically heating the lining of steel-pouring ladles. Metallurgist 56, 357–365. https://doi.org/10.1007/s11015-012-9583-y
Akselrod, L.M., Zabolotskiy, A.V. (2010). Mathematics modeling of metallurgical installations lining destuction under thermal shock. Modern Science: Researches, Ideas, Results, Technologies, Iss. 2(4), 165 - 169. https://www.chiffa.org/msjrn.old/en/issues/2010/files/papers/2010_2(4)_32.htm
Ramanenka, D., Gustafsson, G., Jonsén, P. (2019). Influence of heating and cooling rate on the stress state of the brick lining in a rotary kiln using finite element simulations. Eng. Fail. Anal., 105, 98–109. https://doi.org/10.1016/j.engfailanal.2019.06.031
Samadi, S., Jin, S., Gruber, D., & Harmuth, H. (2022). Thermomechanical finite element modeling of steel ladle containing alumina spinel refractory lining. Finite elements in analysis and design, 206. 2022 (1 September), Article 103762. Advance online publication. https://doi.org/10.1016/j.finel.2022.103762
Ali, M., Sayet, T., Gasser, A., Blond, E. (2020). Transient Thermo-Mechanical Analysis of Steel Ladle Refractory Linings Using Mechanical Homogenization Approach. Ceramics, 3, 171-189.
Timoshenko, D. A., Kolomytsev, E. E. (2013). The drying of the thermal vessels' linings. New refractories, 12, 12-14.
Ana P. M. Diniz., Patrick M. Ciarelli., Evandro O. T. Salles., Klaus F. Coco. (2020). Heat Transfer in Steel Ladles: Models and Applications. Conference: Congresso Brasileiro de Automática. 2 (1), CBA2020.
Lampa, Martin, and Lenka Mokrošová. (2022). “Optimisation of the Thermal Process in Ladle Metallurgy in Terms of the Impact on Energy Consumption and the Environmental Burden during Steel Production.” Koszalin: Politechnika Koszalińska.
Zabolotskii, A.V. (2013). Modeling of cooling of a steel-teeming ladle. J Eng Phys Thermophy 86, 205–210.
Arutyunov V.A., Bukhmir V.V., Krupennikov S.A. (1990). Mathematical modeling of thermal performance of industrial furnaces. Moscow: Metallurgy. - 239 p
Zabolotsky, Andrew. (2011). Thermal crack growth modeling in refractory linings of metallurgical installations. International Journal of Mathematical Models and Methods in Applied Sciences. 5.
Prikhodko, E., Nikiforov, A., Kinzhibekova, A., Aripova, N., Karmanov, A., Ryndin, V. (2024). Analysis of the Cooling Modes of the Lining of a Ferroalloy-Casting Ladle. Energies, 17, 1229. https://doi.org/10.3390/en17051229
O. Tamio, P. Long Yun, I. Masaharu, JP Patent No. WO2015170549A1 (12.11.2015). URL: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015170549
C. Kochling, DE Patent No. DE 20 2004 012 566 U1 (30.12.2004) URL: http://www.koechling.de
A. Wasfy, Ru Patent No. 2624580 (04.07.2017). URL: https://patents.google.com/patent/RU2624580C2/ru?oq=2624580
Mäkelä, I., Visuri, V. V., & Fabritius, T. (2023). A mathematical model for the thermal state of a steel ladle. Ironmaking & Steelmaking, 50(7), 867–877. https://doi.org/10.1080/03019233.2023.2201544
Garten, V., Hochlov, A., Usselmann, V. et al. Plan for modernization of a section that prepares steel-pouring ladles: introducing and improving the performance of monolithic linings and the complex of production equipment. Refract Ind Ceram 54, 111–115 (2013). https://doi.org/10.1007/s11148-013-9559-x
Arist L.M., Shcherbin A.I., Neshcheret P.A., Tolstopyat A.P., Davidson V.E., Gladilin Yu.I., Publika Ya A., Yaremchuk A.I. SU Patent No. 1238888 A1 (23.06.1986) (In Russ.). URL: https://patents.su/?search=1238888&type=yandex&searchid=2150845&text=1238888
Arist L.M., Shcherbin A.I., Neshcheret P.A., Tolstopyat A.P., Davidson V.E. SU Patent No. 1407674 A2 (07.07.1988) (In Russ.). https://patents.su/?search=1407674&type=yandex&searchid=2150845&text=1407674
Neri, M. and Lezzi, A. M. (2023). “Energy demand in secondary steel making process: numerical analysis to assess the influence of the ladle working lining properties”, in Journal of Physics Conference Series, vol. 2509, no. 1, Art. no. 012003. https://doi.org/10.1088/1742-6596/2509/1/012003.
N. Aripova, A. Nikiforov, Y. Prikhodko, A. Kinzhibekova, A. Karmanov, KZ Patent for utility model No. 9001 (12.04.2024). https://gosreestr.kazpatent.kz/Utilitymodel/Details?docNumber=390794
Ioana, Adrian & Nicolae, Constantin & paunescu, & Dobrescu, C. & surugiu, & Pollifroni, Massimo. (2017). Contribution to improving the durability of the refractory lining of the steel ladles. UPB Scientific Bulletin, Series B: Chemistry and Materials Science. 79. URL: http://www.scientificbulletin.upb.ro/?page=revistaonline&a=2&cat=B
