LOGICAL-STATIC PLANNING COMPLEX TECHNICAL OBJECTS OPERATIONS AND FUNCTIONING MODES
Abstract
A definition of operating mode of complex technical object (CTO) concept is introduced. A logical-static interpretation of CTO operating modes is given. A formal grammar of transformations of logical functions for compatibility (incompatibility) of operations in constraints of a static planning model is presented. Transformation rules are introduced for specific cases. An algorithm for formalizing logical multi-mode structures of CTO functioning in static planning terms of operation flows and modes is developed. Results of computational experiments are presented.
References
Pereira, A. C., Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufacturing, vol. 13, 1206-1214, DOI: 10.1016/j.promfg.2017.09.032.
Zakharov, V. (2022). Combined optimization algorithm of complex technical object functioning and its information system modernization. In Y. S. Vasiliev, N. D. Pankratova, V. N. Volkova, O. D. Shipunova, & N. N. Lyabakh (Eds.), System analysis in engineering and control (pp. 487-497). Springer. DOI:10.1007/978-3-030-98832-6_43.
Pavlov, A., Pavlov, D., Zakharov, V. (2019). Possible ways of assessing the resilience of supply chain networks in conditions of unpredictable disruptions. IFAC-PapersOnLine, vol. 52, no. 13, 1283-1288, DOI: 10.1016/j.ifacol.2019.11.375.
Sokolov, B., Ushakov, V., Zakharov, V. (2024). Optimal planning and scheduling of information processes during interaction among mobile objects. International Journal of Production Research, vol. 62, no. 16, 1-20, DOI: 10.1080/00207543.2024.2302388.
Sokolov, B. V., Potryasaev, S. A., Korableva, O. N., Zakharov, V. (2022). Methodology support and algorithms for dynamic synthesis of technologies and programs for proactive management of information processes in the industrial internet under a crisis. International Journal of Risk Assessment and Management, vol. 25, no. 3/4, 194, DOI: 10.1504/IJRAM.2022.130524.
Pavlov, A., Pavlov, D., Umarov, A., Gordeev, A. (2022). Method of structural-parametric synthesis of configuration multi-mode object. Informatics and Automation, vol. 21, no. 4, 812-845, DOI: 10.15622/ia.21.4.7.
Dantzig, G.B. (1956). Recent advances in linear programming. Management Science, vol. 2, no. 2, 131-144, DOI: 10.1287/mnsc.2.2.131.
Shapiro, J. F. (1993). Mathematical programming models and methods for production planning and scheduling. In Handbooks in Operations Research and Management Science (Vol. 4, pp. 371-443). Elsevier. DOI: 10.1016/S0927-0507(05)80188-4.
Ivanov, D., Sokolov, B., Dolgui, A. (2020). Introduction to scheduling in industry 4.0 and cloud manufacturing systems. In D. Ivanov, B. Sokolov, & A. Dolgui (Eds.), Scheduling in Industry 4.0 and Cloud Manufacturing (pp. 1-9). Springer. DOI: 10.1007/978-3-030-43177-8_1
Milner, B. Z., Evenko, L. I., Rapoport, V. S. (1983). System approach to organization management. Ekonomika.
Rigney, J. W., Towne, D. M. (1969). Computer techniques for analyzing the microstructure of serial-action work in industry. Human Factors, vol. 11, no. 2, 113-121.
Ivanov, D., Sokolov, B., Chen, W., Dolgui, A., Werner, F., Potryasaev, S. (2021). A control approach to scheduling flexibly configurable jobs with dynamic structural-logical constraints. IISE Transactions, vol. 53, no. 1, 21-38, DOI: 10.1080/24725854.2020.1739787.
Cheng, J., Josipovic, L., Constantinides, G.A., Ienne, P., Wickerson, J. (2022). DASS: Combining dynamic & static scheduling in high-level synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 3, 628-641, DOI: 10.1109/TCAD.2021.3065902.
Dolgui, A., Ivanov, D., Sethi, S. P., Sokolov, B. (2019). Scheduling in production, supply chain and Industry 4.0 systems by optimal control: Fundamentals, state-of-the-art and applications. International Journal of Production Research, vol. 57, no. 2, 411-432, DOI: 10.1080/00207543.2018.1442948.
Chernykh D, Steshina L, Petukhov I, Andrianov Y, Velev D. The approach to training logging machinery operators. Journal of Applied Engineering Science, vol. 21, no. 1, 2023, 70–75. DOI: 10.5937/jaes0-38214.
Steshina, L., Glazyrin, A., Petukhov, I., Velev, D., Zlateva, P. (2023). Using convolutional neural networks for training forest machine operators. Studies in Systems, Decision and Control, vol. 457, 555–574, DOI: 10.1007/978-3-031-22938-1_38.
Gumerov, H. S., Kulikov, G. G., Rizvanov, K. A. (2022). Formation of semantic and logical constraints of the subject area determined by the object, subject and purpose of research. Bulletin of Ufa State Aviation Technical University, vol. 26, no. 3, 138-145, DOI: 10.54708/19926502_2022_26397138.
Belishkina, T. A., Konstantinova, T. Yu., Lykov, A. A., Markov, D., Mikado, E. N., Sokolov, V. B. (2024). Formalization of transition from IDEF0-diagram to the GPSS-model of life cycle stages of railway automation and remote control systems. Transport Automation Research, vol. 10, no. 2, 368-376, DOI: 10.20295/2412-9186-2023-9-04-368-376.
Yablonsky, S. V. (1989). Introduction to discrete mathematics. Mir Publishers.
Levitin, E. S., Polyak, B. T. (1966). Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, vol. 6, no. 5, 1–50, DOI: 10.1016/0041-5553(66)90114-5.
Krotov, K. V. (2024). Models of mixed integer linear programming for optimizing the inclusion of tasks in packages and the order of operations with them in pipeline systems. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], no. 6, 46-57, DOI: 10.31799/1684-8853-2024-6-46-57.
Kibzun, A. I., Rasskazova, V. (2023). Linear integer programming model as mathematical ware for an optimal flow production planning system at operational scheduling stage. Automation and Remote Control, vol. 84, 529-542, DOI: 10.1134/S0005117923050065.
Shashkin, A. I., Ledenev, M. Y., Shishov, M. M. (2024). About some methods for solving fuzzy linear programming problems. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, no. 4, 43-57, DOI: 10.17308/sait/1995-5499/2023/4/43-57.
Shetty, P., Singh, S. (2021). Hierarchical clustering: A survey. International Journal of Applied Research, vol. 7, no. 4, 178-181, DOI: 10.22271/allresearch.2021.v7.i4c.8484.
Copi, I. M., Cohen, C., McMahon, K. (2016). Introduction to logic. Routledge.
Bresnan, J. (2021). Formal grammar, usage probabilities, and auxiliary contraction. Language, vol. 97, no. 1, 108-150, DOI: 10.1353/lan.2021.0003.
Gergel, V., Kozinov, E., Barkalov, K. (2021). Computationally efficient approach for solving lexicographic multicriteria optimization problems. Optim Lett, vol. 15, 2469-2495, DOI: 10.1007/s11590-020-01668-y.
Fahmi, Sh. S., Ponomarev, N. A., Ho, M. T. M. (2023). New operator for outlining railway infrastructure objects. LETI Transactions on Electrical Engineering & Computer Science, vol. 16, no. 9, 70-76, DOI: 10.32603/2071-8985-2023-16-9-70-76.
Zuenko, A. A., Fridman, O. V. (2024). Developing logical approach to solving automated planning problems: An analytical review. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, no. 4, 104-127, DOI: 10.17308/sait/1995-5499/2023/4/104-127.
Espolov, T. I., Tireuov, K. M., Bogomolova, I. P., Mizanbekova, S. K. (2021). Development of public-private partnership mechanisms in the grain product sub-complex. Proceedings of the Voronezh State University of Engineering Technologies, vol. 83, no. 2, 277-284, DOI: 10.20914/2310-1202-2021-2-277-284.
