HYBRID BLE–PDR LOCALIZATION SYSTEM FOR SMART RETAIL ENVIRONMENTS

  • Nebojša Andrijević The Academy of Applied Studies Polytechnic, Katarine Ambrozić 3, Belgrade, Serbia https://orcid.org/0000-0002-4459-9436
  • Zoran Lovreković The Academy of Technical and Art Applied Studies, 24 Starine Novaka St., Belgrade, Serbia https://orcid.org/0009-0009-9366-3017
  • Bojan Jovanović The Academy of Applied Studies of Kosovo and Metohija, Dositeja Obradovića bb, 38218 Leposavić, Serbia https://orcid.org/0009-0000-7165-7497
  • Vladan Radivojević The Academy of Applied Studies Polytechnic, Katarine Ambrozić 3, Belgrade, Serbia
  • Nenad Živanović The Academy of Applied Studies Polytechnic, Katarine Ambrozić 3, Belgrade, Serbia
Keywords: BLE tags, Indoor localization, PDR, IMU sensors, Map constraints, Smart retail, IoT in retail

Abstract


Accurate indoor user localization is a key component in the development of cashier-free smart stores, enabling advanced customer experiences, security monitoring, and behavioral flow analysis. This paper presents a hybrid localization approach that combines inertial motion tracking (Pedestrian Dead Reckoning – PDR) with Bluetooth Low Energy (BLE) tag signals. Unlike systems that require dedicated infrastructure, the proposed solution uses existing BLE electronic shelf labels (ESLs) as reference points. Their identification signals are used to correct the PDR drift, thereby reducing the cumulative error typical of purely inertial methods. The mobile application continuously measures the Received Signal Strength Indicator (RSSI) from BLE tags and applies threshold-based position corrections, while the PDR module, based on the Scarlett step-length model, maintains continuous tracking between tags. The system additionally integrates map-based spatial constraints that eliminate physically impossible paths through a particle-filter mechanism. Experimental evaluation in a retail environment demonstrated an average error of 0.4 m for linear movement and 1.3 m for a complex circular trajectory, confirming meter-level localization accuracy without the need for cloud processing. All computations are performed locally on the user’s device, ensuring privacy protection and enabling real-time movement analysis and context-aware retail interaction. 

References

Ascher, C., Kessler, C., Weis, R. & Trommer, G. F. 2012. Multi-Floor Map Matching in Indoor Environments for Mobile Platforms. In: Proceedings of IPIN, 2012.

Ashraf, I., Hur, S. & Park, Y. 2023. Smartphone Sensors for Indoor Positioning. Sensors, 23(8), 3811. doi:10.3390/s23083811

Bahl, P. & Padmanabhan, V. N. 2000. RADAR: An In-Building RF-Based User Location and Tracking System. In: IEEE INFOCOM, 2000.

Faragher, R. & Harle, R. 2015. Location Fingerprinting with Bluetooth Low Energy Beacons. IEEE Journal on Selected Areas in Communications, 33(11). doi:10.1109/JSAC.2015.2430281

Fox, D., Burgard, W., Dellaert, F. & Thrun, S. 1999. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots. In: Proceedings of AAAI-99.

Harder, D., Shoushtari, H. & Sternberg, H. 2022. Real-Time Map Matching with a Backtracking Particle Filter Using Geospatial Analysis. Sensors, 22(9), 3289. doi:10.3390/s22093289

Ho, N.-H., Truong, P.-H. & Jeong, G.-M. 2016. Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead Reckoning at Various Walking Speeds Using a Smartphone. Sensors, 16(9), 1423. doi:10.3390/s16091423

Li, G., Geng, E., Ye, Z., Xu, Y., Lin, J. & Pang, Y. 2018. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model. Sensors, 18(9), 2820. doi:10.3390/s18092820

Liu, H., Darabi, H., Banerjee, P. & Liu, J. 2007. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and Cybernetics - Part C, 37(6), pp. 1067-1080. doi:10.1109/TSMCC.2007.905750

Milano, F., Musolino, F. & Pannocchi, L. 2024. BLE-Based Indoor Localization: Analysis of Some Solutions for Tag Localization. Sensors, 24(2), 376. doi:10.3390/s24020376

Naser, R. S., Lam, M. C., Qamar, F. & Zaidan, B. B. 2023. Smartphone-Based Indoor Localization Systems: A Systematic Literature Review. Electronics, 12(8), 1814. doi:10.3390/electronics12081814

Szyc, K. et al. 2023. Bluetooth Low Energy Indoor Localization for Large Industrial Environments. Ad Hoc Networks, 2023. doi:10.1016/j.adhoc.2022.103024

Vezočnik, M. & Jurič, M. B. 2022. Adaptive Inertial Sensor-Based Step Length Estimation Model. Sensors, 22(23), 9452. doi:10.3390/s22239452

Xiao, J., Zhou, Z., Yi, Y. & Ni, L. M. 2016. A Survey on Wireless Indoor Localization from the Device Perspective. ACM Computing Surveys, 49(2), Article 25. doi:10.1145/2933232

Zafari, F., Gkelias, A. & Leung, K. K. 2019. A Survey of Indoor Localization Systems and Technologies. IEEE Communications Surveys & Tutorials, 21(3), pp. 2568-2599. doi:10.1109/COMST.2019.2911558

Published
2025/12/12
Section
Original Scientific Paper