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ABSTRACT

This paper proposes a novel theoretical framework for analyzing fading channels by introducing the concepts of ener-
getic orbits and entropy barriers. Inspired by atomic physics and thermodynamic analogies, here the signal envelope
is modeled as a stochastic process whose transitions between different structural regimes (extrema, inflection points,
level crossings) correspond to energy quantization events. Each transition is associated with a local information-
energy quantum, defined as a product of amplitude displacement and transition count, normalized by local entropy.
Furthermore, the ideas of entropic spin and degeneracy of states have been explored, and the dispersion of level-
crossing processes, extremum-crossing process, inflection point-crossing process, saddle point-crossing process (LCR,
ECR, ICR, SCR) through an autocorrelation-based energetic formalism has been characterized. This approach en-
ables the construction of a layered energetic map of fading dynamics and offers new insights into the structural

behavior of wireless signals under stochastic fluctuations.
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INTRODUCTION

In modern wireless communications, the fading process rep-
resents one of the most critical challenges for maintaining sig-
nal integrity and reliability. Fading arises due to the superposition
of multiple reflected, refracted, and scattered components of the
transmitted signal, leading to time-varying fluctuations in ampli-
tude, phase, and frequency (Simon & Alouini, 2005). These fluc-
tuations can be modeled as stochastic processes with varying sta-
tistical properties, depending on environmental and mobility con-
ditions (Stuber, 2001). Classical fading models, such as Rayleigh,
Rician, and Nakagami-m, Gamma, Weibull, Hoyt, & — u, x — u and
n—u have been used to characterize signal behavior under different
propagation conditions (Panic et al., 2013).

With the advent of 6G and beyond wireless technologies, the
demand for ultra-reliable low-latency communication (URLLC),
massive machine-type communications (mMTC), and enhanced
mobile broadband (eMBB) has led to the need for more refined
performance metrics that go beyond traditional outage probability
or average bit error rate. In this context, crossing statistics, such
as the level crossing rate (LCR) and average fade duration (AFD),
have gained prominence as tools to assess the dynamic structure of
the fading envelope. These metrics capture how frequently and for
how long a signal crosses certain amplitude thresholds, offering a
more nuanced understanding of channel behavior in time-sensitive
or mission-critical scenarios (Abdi & Nader-Esfahani, 2003).

Building on this perspective, recent theoretical work has ex-
tended crossing statistics to include higher-order concepts, such
as extremum crossing rate (ECR), inflection point crossing rate
(ICR), and saddle crossing rate (SCR). These measures rely on
higher-order time derivatives of the fading process and their statis-
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tical distributions, enabling a more granular analysis of waveform
structure. Despite their potential, a unifying physical or informa-
tional interpretation of these metrics remains elusive, especially in
connection with signal energetics and system-level implications.
This paper introduces a novel informational-energetic
framework that interprets crossing phenomena in fading channels
as transitions across entropic barriers and energetic orbital zones.
Motivated by analogies to thermodynamic systems, characteris-
tic energy levels associated with crossing statistics has been de-
fined and their interdependence with entropy-like measures and
signal variability has been observed. Contribution lies in bridging
stochastic signal analysis with conceptual tools inspired by statis-
tical mechanics and information theory, thereby proposing a new
lens through which to understand the microstructure of fading dy-
namics. This framework aims to complement existing analytical
methods while offering fertile ground for new interpretations, vi-
sualizations, and performance insights in future wireless systems.

SYSTEM MODEL

Let X(7) be a stationary, ergodic random process represent-
ing the fading envelope. For a given threshold level u, the LCR
quantifies the frequency of signal excursions across level u in both
directions, positive and negative crossing (Rice, 1944, 1945):

N = fo i py x(u, %) dx. (1)

0
Nf;):—f

and

(@)

X py x(u, X) dx.



where py y(x, X) represents joint probability density function
(JPDF) of random process X(¢) and its first time derivative X. The
total LCR is in that case then given by:

N,=NP + N7 = f 1] px x (u, %) d. 3)
0
The AFD can be correspondingly derived as (Rice, 1944):
F
AFD, = x(u) @
Ny

where Fy(u) is the cumulative distribution function (CDF) of X (),
while N, is the total LCR. AFD can be decomposed into upward
and downward fade durations as (Tikhonov, 1970):

Fx(u) Fx(u)

AFD{" = , :
o N

AFD!) =

&)

corresponding to upward and downward crossings of level u.
Higher-order statistics extend these concepts to the curvature and
geometric behavior of the fading process, describing progressively
its finer structural properties (Blachman, 1999). ECR quantifies
local extrema, ICR captures curvature reversals, and SCR charac-
terizes the sharpness or saddle-like transitions between inflection
points. This multiscale statistical perspective is particularly useful
in modern communication systems where fine envelope fluctua-
tions directly impact reliability and error dynamics.

As mentioned, ECR counts zero-crossings of X (), capturing

local maxima:
0
Ioo

f X pxxx,0,%) dX.
0

max

up

(6)

¥ pxx x(u, 0, %) dx.

and local minima:

min

rlu

= (7
for observed level u of random process. The total ECR is in that
case then given by:

max min

Ny =1, +n, (8)

- f 16 P 6, 0,5)
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In similar manner ICR can be observed as characterization
related to curvature transitions (changes in concavity). Number of
translations from concave to convex process can be obtained as:

00
K = f X pxxx x (%0, X)d X, 9)
0
while convex-to-concave translations of random procces u can be
expressed as:

0
K= - f ¥ pxxx x W %,0, ¥)d ¥ (10)
The total ICR is in that case then given by:
Ko = kP + &) = f | %1 pyxx. ¥ W %0, ¥)d ¥ (11)
0
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The SCR measures the rate at which the third derivative
of curvature, X (1), crosses zero, indicating rapid geometric tran-
sitions in the signal’s shape. It is especially useful in detecting
saddle-like behaviors and sharp geometric inflection transitions.

Now let us define SCR as the sum of two directional com-
ponents: Convex-to-saddle transitions, which can be calculated ac-
cording to:

" —

u

f x® DPxxx. % xo U, %, %,0, Ay dx @, (12)
0

and Concave-to-saddle transitions, which can be calculated ac-

1.

In that case the total CSR is thus expressed as:

cording to:

) _

u

@

K@ DPx.xx ¥ xo U, %, %0, x) dx (13)

- 4 - 4 4
Xu=xP 0 = f |x€ )le,X,X, ¥ xo (U, X, %, 0, AN dx®. (14)
0

To extend the concept of AFD to higher-order structural
features of the fading process, let us introduce analogous time-
domain measures for extrema, inflection points, and saddle ge-
ometries, i.e. Average Extrema Duration (AED), Average Inflec-
tion Duration (AID) and Average Saddle Duration (ASD). AED
metric quantifies the average time between successive extrema (lo-
cal maxima or minima) below a threshold level u. It is defined as:

P(X <u) Fxu)
Mu M
where Fx(u) is the CDF of the fading envelope X(#) and 7, is the

total ECR at level u. This metric can be split as:

Fx(u) Fx(u)
max °’ min *

AED, =

15)

AED™) = AED™" = (16)
to separately quantify the durations between local maxima and lo-
cal minima.

AID metric measures the average duration between transi-
tions in the curvature of the signal envelope, which correspond to

inflection points:

PX <u) Fx(u

Ky

AID, =

A7)

KL(

where «, is the ICR. Optional directional variants can also be de-

fined:
Fx(u)

Fx(u)
o '

AID(Y =
K,(,_)

AID$) = (18)

For completeness, the same logic can be extended to saddle tran-
sitions associated with ASD higher-order derivative crossings:

Fx(u)
Xu
where y, denotes the SCR, based on zero-crossings of the third

derivative of the curvature. It can be decomposed as:

Fx(u) Fx(w)

X X

ASD, = (19)

ASDY”) = ASD(™ = (20)



denoting forward-saddle and backward-saddle transition durations
respectively. These generalized duration metrics allow for a mul-
tiscale characterization of the temporal structure of the fading
process, enabling refined analysis of signal behavior in advanced
wireless systems.

In the context of fading processes, the time derivatives of the
envelope X(f)—such as X(f), X(1), and higher orders—are often
modeled as zero-mean Gaussian random variables. This assump-
tion is justified for wide-sense stationary and ergodic processes
due to the smoothness and symmetry of their autocorrelation struc-
ture. Speciﬁcally, the variance of the n-th time derivative of X(7),
denoted by o-x(n), is obtained by evaluating the 2n-th time deriva-
tive of the autocorrelation function Rx(7) at the origin:

2n

drn

0% = (=1)" —-Rx(7) 1)

=0

Assuming zero mean and Gaussianity, the PDF of the n-th
time derivative X® is:

Moreover, for stationary Gaussian processes, time deriva-
tives of even and odd order are uncorrelated and hence statistically
independent due to symmetry of the autocorrelation function:

x2

52
2 X(n)

1
pxn(X) = —— eXP[ (22)
2no

X

E [X(”)(t) . X(m>(;)] =0, forn+modd.

This property simplifies joint PDF formulations used in crossing
rate computations involving mixed orders of derivatives.

Let Rx(t) denote the ACF of X(f). For isotropic Rayleigh
fading:

Rx(7) = Jo2rfp7).

where fp is the maximum Doppler frequency and Jy(-) is the
Bessel function of the first kind. Time derivatives of the process
can be computed using:

(23)

1

ot e

n

Ry (1) = ———Rx(t - 1) (24)

t=t'

In example for Rayleigh fading, where the envelope has PDF:

2 2
px() = —“ exp (—“5) u>0. 25)
the LCR at level u is given by:
Vo = V21 fp - —= ex @ (26)
u = D @ p Q .

where fp is the maximum Doppler frequency and Q = E[X?] is
the average envelope power. Using the conditional Gaussian ap-
proximation, the ECR at level u becomes:

6 u u?
=225 Lexpl=L ).
T \/;f’) QexP( Q)
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where the variances of derivatives are:

2

Y = 27 f50

0')2-(-|X = 6r* ng

o

(28)
(29)
Similarly ICR and SCR values can be determined.

The variance of the number of level crossings N,(T) during
interval [0, T']:

Var[N,(T)] = f (T - 1) RN (1) - NZ] (30)

where Ry, (1) is the autocorrelation function of the crossing pro-
cess:

R, (1) = f f bl ool Py 0t 1t £ D) s . 31

The same structure can be used for ECR dispersion:

T
Var[Ny_o(T)] = 2 fo (T =) [Ry(D) - "] d. (32)

The variance of the number of extremum crossings Ny_q(T')
in the time interval [0, T'] is given by:

T
Var[Ny_o(T)] = 2 fo (T =) [Ry(7) - ] d. (33)

where R, (7) is the autocorrelation function of the ECR process,
expressed as:

Ry(7) = f f %11 13| px x % x x5 (4, 0, %1, 4,0, %25 7) diy dXs.

o (34)

Similarly, the variance of the number of inflection point
crossings Ny_o(T') over the interval [0, T'] is:

T
Var[Ny_o(T)] = 2 f (T - 1) [R(7) - ] dr. (35)
0

where the autocorrelation function of the ICR process is given by:

Rm):f f 4% d ] ¥ )

pX!X, X',X’,X’!X'/(’/h 0’ :)E:'l,u’ O’ R'Z;T)' (36)

Finally, the variance of the number of saddle point crossings
Ny —o(T)is:

T
Var[N i—o(T)] = 2 fo (T -1)[R(@) - x*|dr.  (37)

with the ACF of the SCR process:

X(T)_ff PN

- 4) o 4)
pX(t),X(I), X (O),XD(0),X(t+7),X(t+7), X (Z+T),X(4)(t+‘r)(u’ X1, 0’ Xl , Uy X2, 0’ xz ) .
(38)

For each fading model, one can identify characteristic en-
velope levels at which key stochastic rates attain their maxima.
Specifically, the saddle crossing rate (SCR) reaches its maximum



Arbitrary Fading Case
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Figure 1. Illustration of the envelope PDF with statistical markers
for characteristic crossing metrics.

-1
" max(X), fol-
lowed by the inflection crossing rate (ICR) at xjcr-max, the ex-

at the lowest amplitude level, denoted Xscr-max = K
tremum crossing rate (ECR) at xgcr-max, and the level crossing
rate (LCR) at x;cr-max- The envelope PDF itself typically peaks
at Xppr-max = O, wWhich lies below the statistical mean E[X]. In
unimodal and symmetric fading distributions such as Rayleigh or
Nakagami-m, this ordering generally holds (see Figure 1 ):

XSCR-max < XICR-max < YECR-max < XLCR-max < XpDF-max < E[X].
(39
This progression reflects a natural gradient from transient and lo-
calized features of the envelope (e.g., saddle points) to more stable
and probable signal excursions (e.g., mean level crossings).

The entropic envelopes for various crossing-based statistics
in fading processes can be formally defined by tracing the loci of
their instantaneous local maxima. Each envelope captures a struc-
turally dominant transition zone corresponding to a particular or-
der of derivative behavior in the signal dynamics (Stefanovic et al.,
2012).

Let X(r) be a continuous fading process with continuous
derivatives up to fourth order. The envelope surfaces correspond-
ing to the maxima of various crossing statistics are defined by:

PDF Envelope:
d
Eppr = argmax < px(x) | —px(x) = 0. (40)
xeR dx
LCR Envelope:
Sicr(t) =arg  max  X(1). 1
X(H=0, X(H)<0
ECR Envelope:
Spcr(t) =arg  max  X(0). (42)
X(1)=0, X(1)#0
ICR Envelope:
Sicr() =arg  max  X(). (43)

X(0=0, X ()20
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Envelope of Maximal LCRs in Nakagami-m Fading
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Figure 2. Illustration of the envelope surface of maximums of
LCR process of Nakagami-m fading.

SCR Envelope:

Escr(f) = arg . max X(1). 44)

X' (=0, X®(1)#0

These envelopes, individually and collectively, delineate
macro-scale statistical boundaries in the signal space and can be
interpreted as entropic manifolds — encoding the dominant ex-
cursion behavior of the underlying fading process across multiple
derivative dimensions. The entropic envelope can be interpreted as
a singular solution to a higher-order differential equation that gov-
erns the statistical dynamics of the fading process. In this context,
the standard statistical measures such as the PDF, LCR, ECR, ICR
and SCR represent particular solutions or projections of this gov-
erning structure under specific boundary or derivative constraints.
While the PDF captures the stationary distribution of the enve-
lope, the derivative-based crossing rates correspond to dynamic
transitions across levels of increasing geometric complexity. The
envelope thus encodes a global, macro-structural constraint, guid-
ing the formation of localized statistical behaviors and acting as
an attractor surface in the space of observable transitions.

Figure 2 illustrates the surface behavior of the normalized
LCR in a Nakagami-m fading environment as a function of the
fading severity parameter m, the average power (), and the sig-
nal level u (expressed in decibels). Several semi-transparent LCR
surfaces corresponding to fixed values of u are shown to depict
the structural variation of the LCR in the 3D parameter space.
Overlaid on these surfaces is a prominent red envelope surface
that traces the locations of maximum LCR values across all com-
binations of m and Q, obtained by solving %LCR(u; m,Q) = 0.
This envelope delineates the most probable fluctuation intensities
for different fading regimes and serves as a boundary surface sep-



arating regions of deterministic behavior from those dominated by
stochastic excursions, supporting the concept of entropic zones in
fading dynamics.

RESULTS AND DISCUSSION

Entropic Envelopes and Structural Boundaries of Fading Pro-
cesses

The concept of entropic envelopes is proposed as a statistical
framework to characterize the structural transitions within stochas-
tic fading processes. These envelopes are defined as boundary sur-
faces composed of local maxima of key statistical rate functions,
namely: PDF, LCR, ECR, ICR, SCR. Each of these rate functions
encodes a distinct type of structural behavior of the fading enve-
lope.

max

— The first boundary, denoted xpfr, corresponds to the most
probable signal level, i.e., the maximum of the PDF. This
point represents the mode of the process and serves as a sta-
tistical center of mass for the fading distribution.

The LCR envelope corresponds to amplitude-level crossings
(zero-crossings of the first derivative). Its maximum, xﬁ”‘é’l‘{,
identifies the most likely signal level where crossings of a
fixed threshold occur.

The ECR envelope tracks local maxima and minima by iden-
tifying points where the first derivative vanishes and the sec-
ond derivative is non-zero. The maximum xJ%; denotes the
dominant structural oscillation scale.

The ICR envelope captures inflection points (zero-crossings
of the second derivative with non-zero third derivative). x'g
marks transitions in curvature and delineates regions of ac-
celeration in signal fluctuation.

The SCR envelope reflects higher-order geometric transi-

tions by locating points where the third derivative vanishes

max
SCR

defines saddle-like changes in the envelope’s trajectory, rep-
resenting the outermost boundary of structured variation.

and the fourth derivative is non-zero. The maximum x!

The positions of these maxima, ordered as:

a. max

max max max max
XgCR = XicR = XgcR S MR S

“PDF-
serve to partition the signal domain into hierarchical entropic
zones, where each successive zone represents an increased level
of local irregularity or complexity in the signal structure.
Physically, these envelopes can be interpreted as phase-like
statistical boundaries that separate regions of predictable, smooth
envelope behavior from those dominated by rapid transitions and
complexity. In this sense, they form a spectrum of stochastic regu-
larity, useful for defining operational regimes in wireless commu-
nication systems. From a practical standpoint, entropic envelopes
support tasks such as adaptive modulation, outage prediction, and
time-frequency signal classification by providing natural demarca-
tions in the dynamics of the fading process.
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Orbital Interpretation of Transitions

Each zone defined by the maxima of LCR, ECR, ICR, and
SCR can be conceptualized as an orbital level, similar to discrete
energy states in quantum mechanical systems. In that way it can
be observed that structural patterns in the fading envelope tend
to cluster within well-defined entropic zones. The transitions be-
tween these zones represent quantum energy-like changes in the
statistical configuration of the process.

From this perspective, a crossing from a local minimum to
a maximum, or from an extremum to an inflection point, can be
seen as a statistical excitation or relaxation. The system exhibits
quantized patterns of movement between these zones, governed by
the underlying autocorrelation structure and derivative variances.

This analogy provides a powerful framework to analyze the
spectral behavior of fading processes. It allows us to assign struc-
tural transitions to distinct entropic orbitals, each characterized
by a dominant derivative feature and its associated variance. This
interpretation supports the development of quantized information
models for wireless fading dynamics.

Directional Characterization of Structural Transitions

To provide a finer classification of the structural transitions
in the fading envelope, a directional labeling scheme that char-
acterizes the polarity and orientation of each transition event can
be introduced. Specifically, transitions are categorized based on
whether they represent an ascent (e.g., from an inflection point to
a local maximum) or a descent (e.g., from a maximum to a subse-
quent inflection or minimum). This directionality reflects the tem-
poral asymmetry in the envelope’s evolution.

Incorporating this directional information enriches the struc-
tural taxonomy associated with the entropic envelope framework.
Each entropic zone, defined by features such as maxima, inflec-
tions, or saddle points, can now be associated not only with its
morphological type but also with the directional trajectory that the
envelope follows through it. This dual classification captures both
the geometric structure and the dynamical flow of the signal pro-
cess.

Such directional analysis becomes particularly valuable in
environments exhibiting asymmetry or spatial non-stationarity,
such as in multi-antenna or frequency-selective fading scenarios.
By distinguishing ascending from descending transition paths, this
framework enhances the ability to identify transient versus stable
phenomena in the signal, improving both analytical insight and
predictive capability in practical systems.

Let X(r) be a continuous envelope process defined on the
interval ¢ € [0, T], and let X?(¢) denote its n-th time derivative.
For any structural transition of order n, we define the directional
counts:

NYAT) = #{t; € [0,T1| X™(t;) = 0, X" () <0}, (45)
NYT) = #{t; € [0,T1| X™(t;) = 0, X" V() > 0} (46)



The total number of directional transitions of order # is then
given by:
N(T) = N(T) + N™(T). 7
As a concrete example, for the second-order transitions corre-
sponding to local extrema (ECR events), we have:

NP(T) = #{1 € [0, 71| X(5) = 0, X(t) <0},  (maxima).
(48)
NEA(T) = #{1; € [0,T1| X(1) = 0, X(t) > 0}, (minima). (49)
This framework thus generalizes to any transition order #,
and enables a rigorous classification of the signal’s structural dy-
namics by associating both morphological and directional infor-

mation with each observed transition.

To quantify the informational complexity of directional tran-

sitions, we define an entropy-based metric over the normalized
counts of upward and downward events. Let:

oo VD NI(T)
T NO(T) T NO(T)

= 1. The directional transition entropy is then given

(50)

with p® + p®

by:

= —p{ log, p?” ~ p" log, p. &)
This entropy attains its maximum value H, = 1 when both tran-
sition types are equally likely, indicating maximal uncertainty in
directionality. Lower values reflect an asymmetry or bias in tran-
sition polarity, which may correspond to a directional drift or non-
stationarity in the envelope dynamics.

H,

Rayleigh Envelope with Detected Maxima and Minima
Directional Entropy H, = 1.000
Rayleigh Envelope X(t)
o Maxima (V)
©  Minima (V%) oo . .

Envelope Amplitude X(t)

Time [s]

Figure 3. Rayleigh fading envelope with identified local extrema
over time.

Red dots at Fig. 3 indicate upward second-order transitions
(local maxima), while green dots mark downward second-order
transitions (local minima). The underlying signal X(¢) is shown
in orange. The balance between the number of maxima fo) and
minima N® yields a directional entropy of H, = 1.000, indicat-
ing complete symmetry in the polarity of second-order transitions.
This statistical symmetry reflects the ergodicity and isotropy of
the Rayleigh fading model and supports the assumption of equal
probability for structural ascent and descent events.

Assuming the process X(#) is ergodic and wide-sense sta-
tionary over a finite observation window of duration 7, the aver-
age waiting time between directional transitions of order n can be
expressed as:
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E[A/"] = nT . (52)
NY(T)

E[A"] = nT : (53)
N(T)

where Ni")(T) and N (T) denote the total number of ascending
and descending transitions of the n-th order observed within the
interval [0, T']. The time horizon T represents the total observation
period over which the statistical averages are estimated.
These quantities provide temporal scales over which structural
transitions of a given direction and order typically occur. For ex-
ample, a lower ]E[Atf)] implies frequent upward extrema (local
maxima), possibly indicating bursty or rapidly varying behavior
in the envelope. The full set {E[At(i")]} across several n-values can
be interpreted as a temporal fingerprint of the stochastic struc-
ture, with potential applications in classification, anomaly detec-
tion, and adaptive system design.

Finally, an entropy-weighted transition index for order n can
be defined as:

—_— Hn

() _
q E[At™]

(54
where E[Af™] = T/N"™(T) is the average inter-event duration for
all transitions of order n. This metric reflects the informational flux
density of structural transitions, combining their rate and direc-
tional uncertainty. High values of Q™ indicate both frequent and
directionally unpredictable transitions, while lower values point to
either sparsity or determinism in the process dynamics.

Entropic-Informational Structure of Derivative Transitions

The entropic-informational structure of a stochastic enve-
lope process is characterized through a hierarchy of statistical tran-
sition functions, each associated with a specific time-derivative
order of the underlying ACF. These functions namely the LCR,
ECR, ICR, SCR, capture the envelope’s structural complexity at
increasing levels of geometric differentiation.

Each crossing function highlights localized regions of ele-
vated statistical activity, where the envelope exhibits critical mor-
phological features such as amplitude crossings, extrema, curva-
ture sign changes, or higher-order saddle points. These transitions
are intrinsically tied to the variances of the corresponding deriva-
tives of the process and reflect the concentration of structural dy-
namics in specific signal regions.

By systematically analyzing these features, one obtains a
compact representation of the envelope’s geometric irregularities
and their distribution across scales. This derivative-based charac-
terization facilitates rigorous classification of stochastic signals in
terms of entropic density and structural coherence, offering valu-
able insights for tasks such as fading channel modeling, signal
classification, and adaptive information encoding in complex wire-
less environments.



Transition Quanta and Characteristic Energies

Each transition between entropic zones can be quantified using an
informational-energy expression, defining the transition quantum
as:

AM,‘ - AN, i

qgi= —]—. (55)
" pilog(p)

where Auy; is the level excursion, AN; is the number of transitions

in that zone, and p; is the transition probability. The total informa-

tion quantum can be in that case computed as the inverse harmonic

zi)

i

The characteristic energy of the nth-order transition zone is
defined through the autocorrelation of the corresponding crossing
process:

sum:
1

o' —
qi

(56)

T
2T f (T = T)[Ryw (1) — V"))t = HX™)-Q7'.  (57)
0

where H(X™) is the entropy of the nth derivative of the process.
The entropy can be given by:
H(X™Y = l l 2
X" = 5 + 5 log(2no % )- (58)
This framework connects transition rates with both informational
content and energy expenditure, providing a dual view of envelope
complexity.

Structural transitions in fading processes may converge
when higher-order features of the envelope become indistinct.
Specifically, critical points such as local maxima may gradu-
ally lose curvature and merge with neighboring inflection points,
thereby collapsing distinct entropic zones into a unified region of
statistical indeterminacy. This transition signifies the onset of what
can be termed an entropic continuum, where discrete morphologi-
cal events become indistinguishable.

Within this continuum regime, the envelope process exhibits
increased stochastic irregularity, characterized by an absence of
clear-cut extrema, inflection points, or saddle structures. The ge-
ometric regularity of the signal deteriorates, and the fading pro-
cess approaches a structurally chaotic behavior. Under these con-
ditions, classical descriptors fail to isolate features, and one must
instead rely on global metrics such as crossing densities, spectral
entropy, or cumulant-based statistics to quantify complexity.

The total number of structural excursions accumulated
across all entropic orders provides a macroscopic measure of this

complexity:
Neotal = Z NO.

l

(59)

where N represents the number of transitions of structural order
i. This aggregate count offers a coarse-grained but comprehensive
summary of the signal’s morphological dynamics.
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Entropic Potential and Informational Transition Fields

To characterize the directional bias and local dynamics of
structural evolution in fading processes, we introduce the notion
of an entropic potential field. This scalar function encapsulates the
tendency of the signal envelope to transition through distinct mor-
phological states, driven not by classical energy considerations,
but by local informational gradients.

Let U(x) denote the entropic potential at envelope level x.
One possible formalization connects U(x) to the derivative of the
autocorrelation function Rg?)(‘r), or to the derivative of the cross-
ing density function. An alternative formulation ties it to the nor-
malized transition quantum ¢g; via Eq.55, where Ay; and AN; de-
note amplitude and transition count variations within zone 7, and
p; is the normalized probability of such transitions. These local
information-energy interactions define the entropic geometry of
the process.

The entropic potential field defines an informational gradi-
ent landscape that directs the evolution of the stochastic envelope
between regions of relative stability and instability. Analogous to
physical systems, this potential may exhibit local minima, inter-
preted as informational attractors and local maxima, correspond-
ing to repelling configurations. These structural extrema delineate
statistically dominant regimes within the signal space. This frame-
work provides a rigorous basis for enhancing signal processing
strategies in adaptive wireless systems, including channel state
estimation, predictive modeling, and rate adaptation under non-
stationary fading conditions.

Entropic Potential Function for Structural Transitions

For a generic structural transition of order n, the entropic
potential function T (x) can be defined as:

— N™(x) is the crossing rate function of order n (e.g., LCR for
n =1, ECR forn = 2, etc.),

- max, N (x) is the global maximum of the crossing rate
function over the signal domain x,

N (x)

max, N®(x) (60)

U (x) = —log(

where:

Interpretation:

- Low potential values U™ (x) ~ 0 indicate high likelihood of
structural transitions, forming informational wells.

— High potential values reflect statistically rare transitions,
forming entropic barriers.

— The potential profile U™ (x) reveals the spatial concentra-
tion of structural events and helps delineate the stochastic
geometry of the envelope process.

These curves presented at Fig. 4 highlight the informational
landscape of the signal, where valleys indicate statistically dom-
inant transitions (most likely signal levels), and peaks represent
entropic barriers or rare events.



Entropic Potentials for Rayleigh Fading

PDF Entropic Potential
—— LCR Entropic Potential

25| — ECR Entropic Potential

= N
o 5]

=
o

Entropic Potential 74" (x)

5 10 20

Envelope Level x [dB]

Figure 4. Entropic potentials for Rayleigh fading.

Energy-Entropy Transformation

Two fundamental transformation directions in the study of
entropic zones can be identified. The first, energy-to-entropy, ob-
serves how structural events such as maxima and saddles can be
mapped to entropic zones via their statistical significance. This re-
sults in an entropic spectrum that characterizes the process’s dis-
order. The second transformation, entropy-to-energy, aggregates
the local information contributions (via H(X™)) across derivative
orders to reconstruct energy-like measures. This enables the syn-
thesis of predictive models that treat entropy as a form of latent
structural energy. Together, these dual transformations establish a
bridge between physical interpretation and information-theoretic
representation of stochastic fading envelopes. They offer a unified
framework for analyzing complexity and transitions in dynamic
systems.

Practical Applications of Study

The entropic envelopes derived from LCR, ECR, ICR, and
SCR maxima delineate statistically significant signal regimes,
which can inform adaptive modulation and coding strategies. For
example, regions corresponding to low entropic potential indicate
high transition density and increased signal variability, suggest-
ing the need for robust coding schemes or fallback modulation
orders. Conversely, zones with reduced structural activity allow
for more aggressive spectral efficiency. Moreover, the entropy-
weighted transition index Q" and directional entropy H, pro-
vide powerful tools for anomaly detection. Abrupt changes in
these metrics over time may signal deviations from normal fading
behavior due to interference, obstruction, or hardware faults. In
multi-antenna and cooperative systems, the identification of direc-
tional asymmetry through Ni") enables intelligent diversity com-
bining by prioritizing channels that exhibit more favorable struc-
tural stability. Collectively, these descriptors form a compact sta-
tistical signature of the fading environment that can be exploited
for real-time adaptation and resilience in dynamic wireless chan-
nels.
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CONCLUSION

In this work, we introduced a novel framework for the struc-
tural analysis of stochastic fading processes through the concept
of entropic envelopes, which identify and classify the most statis-
tically significant transitions within the signal envelope. By sys-
tematically analyzing the local maxima of the LCR, ECR, ICR,
SCR, corresponding envelope surfaces are constructed that repre-
sent the statistical basis for the fading dynamics. These surfaces
highlight regions of high transition density and define operational
boundaries within the signal space. Building upon these crossing
based features, a directional transition taxonomy based on the sign
of higher-order derivatives have been proposed, with introducing
quantities such as Nfr”), N, and associated waiting times. This
helped to define an entropy based index H,, that quantifies the bal-
ance of structural transitions, and a derived entropic flux density
Q™, which jointly measures the frequency and unpredictability of
such events. Together, these descriptors offer a compact tempo-
ral fingerprint of the stochastic envelope process. Furthermore, the
notion of an entropic potential U™ (x) has been introduced, anal-
ogous to potential energy landscapes, capturing the informational
cost of observing a transition at a given signal level x. Finally,
an analogy with quantum orbitals was discussed, where structural
transitions occupy discrete entropic zones, and degeneracy leads to
the merging of these zones into an entropic continuum. This per-
spective opens new pathways for the quantized modeling of fading
dynamics and their application in statistical signal processing and
wireless communication system design.
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