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ABSTRACT

Since its introduction by Molodtsov in 1999, soft set theory has gained widespread recognition as a method for
addressing uncertainty-related issues and modeling uncertainty. It has been used to solve several theoretical and
practical issues. Since its introduction, the central idea of the theory-soft set operations-has captured the attention
of scholars. Numerous limited and expanded businesses have been identified, and their attributes have been
scrutinized thus far. We present a detailed analysis of the fundamental algebraic properties of our proposed
restricted theta and extended theta operations, which are unique restricted and extended soft set operations. We
also investigate these operations’ distributions over various kinds of soft set operations. We demonstrate that, when
coupled with other types of soft set operations, the extended theta operation forms numerous significant algebraic
structures, such as semirings in the collection of soft sets over the universe, by taking into account the algebraic
properties of the extended theta operation and its distribution rules. This theoretical subject is very important from
both a theoretical and practical perspective since soft sets’ operations form the foundation for numerous

applications, including cryptology and decision-making procedures.
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INTRODUCTION

The real world is filled with a lot of uncertainty.
Conventional mathematical reasoning is unable to tackle these
issues. More scientific investigation that goes beyond the
capability of currently accessible methodologies has been
necessary to dispel these uncertainties. In this sense, Pascal and
Fermat created the theory of probability in the early 17th
century when they conducted an analytical study of the
uncertainty problem. In the early 1800s, a large number of
scientists investigated uncertainty.

Many values were discovered as a result of Heisenberg's
1920 explanation, which was the first to explain uncertainty.
Early in the 1930s, Lukaisewicz developed the first three-valued
logic system. A few theories that may be used to describe
uncertainty include probability theory, interval mathematics,
and fuzzy set theory; however, each of these theories has
drawbacks of its own. Thus, the concept of “Soft Set” was first
proposed by Molodtsov (1999) and has nothing to do with how
the membership function evolved. While soft set theory utilizes
a set-valued function instead of a real-valued one, fuzzy set
theory aims to eliminate ambiguity. This idea has been
successfully applied in several mathematical fields since its
conception, such as Riemann integration, Perron integration
analysis, game theory, probability theory, and measurement
theory.
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Soft set operations were first studied by Maji et al. (2003)
and Pei and Miao (2005). Ali et al. introduced a number of soft
set operations (2009), including restricted and extended soft set
operations. In their work on soft sets, Sezgin & Atagilin (2011)
established and gave the characteristics of the restricted
symmetric difference of soft sets. They also explored the
principles of soft set operations and gave illustrations of how
they relate to one another. A thorough examination of the
algebraic structures of soft sets was carried out by Ali et al.
(2011). A number of academics were interested in soft set
operations and conducted extensive studies on the subject in
(YYang, 2008; Neog & Sut, 2011; Fu, 2011; Ge & Yang, 2011,
Singh & Onyeozili, 2012a; Singh & Onyeozili, 2012b; Singh &
Onyeozili, 2012c; Singh & Onyeozili, 2012d; Husain et al.,
2018).

In recent years, a wide variety of novel soft set operations
have been implemented. The idea and characteristics of the soft
binary piecewise difference operation in soft sets were initially
presented and examined by Eren & Calisici (2019). Sezgin et al.
(2019) introduced the extended difference of soft sets, while
Stojanovic (2021) characterized the extended symmetric
difference along with its properties. Furthermore, a
comprehensive examination of restricted and extended
symmetric difference operations was carried out by Sezgin &
Cagman (2024). Sezgin et al. (2023c) worked on numerous new
binary set operations and defined several more, inspired by the
work of Cagman (2021), who introduced two new complement
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operations to the literature. Using this method, Aybek (2024)
proposed several new restricted and extended soft set
operations. Three authors, Akbulut (2024), Demirci (2024), and
Sarialioglu (2024), focused on complementary extended soft
sets operations in their attempts to alter the structure of extended
operations in soft sets. Other types of soft set operations,
complementary soft binary piecewise operations, were further
investigated by (Sezgin & Aybek, 2023; Sezgin & Akbulut,
2023; Sezgin & Dagtoros, 2023; Sezgin & Demirci, 2023;
Sezgin & Sarialioglu, 2024; Sezgin & Yavuz, 2023a; Sezgin et
al., 2023a; Sezgin & Atagiin, 2023; Sezgin & Cagman, 2024).
In addition, Sezgin & Calisict (2024) carried out a
comprehensive analysis of the soft binary piecewise difference
operation, while Sezgin & Yavuz (2023) and Yavuz (2024)
investigated other soft binary piecewise operations.

Classifying algebraic structures and finding, representing,
and drawing inferences from their common features are the
goals of abstract algebra. The name of the abstract algebra used
in this area of mathematics is due to this. Mathematicians have
studied algebraic structures for millennia because they offer an
abstract and universal foundation for learning and
understanding mathematical topics. Many branches of
mathematics depend on algebraic structures. There are several
significant applications of algebraic structures, such as rings,
groups, and fields, in mathematics as well as other disciplines
like computer science and physics. The foundation for
comprehending increasingly difficult mathematical ideas is laid
by the frameworks of algebraic geometry (the study of
multivariable polynomial solutions), algebraic topology,
modular arithmetic, physics, number theory, and computer
graphics, among other extremely significant subjects.
Moreover, a foundation for comprehending and researching a
broad variety of mathematical objects and their relationships is
provided by mathematical structures.

Groups have applications in physics, chemistry, and
cryptography and are used to study symmetries, rotations, and
transformations in mathematical contexts. Studying the
symmetries of fascinating geometric objects and forms requires
an understanding of fundamental groups and their
representations as group transformations, which are
fundamental algebraic structures. Abstract algebra, coding
theory, and number theory all make use of rings. Geometry and
other mathematical topics require a solid understanding of field
algebra. Engineering, quantum physics, and linear algebra all
employ vector spaces. Algebra is used in computer science,
physics, and mathematical reasoning. Both representation
theory and abstract algebra make use of modules. Moreover,
abstract algebra, which examines the shared structures and
common features of many algebraic systems, is centered on the
study of algebraic structures. By knowing these systems'
features, mathematicians may create new theories, solve
challenging problems, and apply ideas to a variety of
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mathematical, scientific, and technical fields. Additionally,
special cases of algebraic structures are frequently provided in
applications, which make it easier to look at more general cases
and help make sense of specific ones.

Near-rings, semirings, and semifields are a few of the most
well-known binary algebraic structures, which are the
generalizations of rings. For a very long time, academics have
been keen to understand more about this subject. Ever since
Vandiver (1935) introduced the concept of semirings, a number
of researchers have studied it. Semirings are very important in
mathematics and have many applications, according to
Vandiver (1935). In addition to its significance in geometry,
semirings have several applications in the information sciences
and practical mathematics (Vandiver, 1935). Semirings are
important in pure mathematics and geometry, and they are
useful in many other fields as well (Ghosh, 1996; Wechsler,
1978; Golan, 1999; Hebisch & Weinert, 1998; Mordeson &
Malik, 2002; Kolokoltsov & Maslov, 1997; Hopcroft & Ullman,
1979; Beasley & Pullman, 1988; Beasley & Pullman, 1992).

The categorization of algebraic structures according to the
properties of the operation is one of the most important
problems in algebraic mathematics. We may suggest new
operations on soft sets, examine their properties, and take into
account the algebraic structures they form in the collection of
soft sets in order to further our grasp of this subject. Thus far,
four extended soft set operations (extended intersection, union,
difference, and symmetric difference for soft sets) and four
limited soft set operations (restricted intersection, union,
difference, and symmetric difference) have been presented.

Our goal is to make a significant contribution to the field
of soft set theory by proposing a new restricted and extended
soft set operation for soft set theory, which we call "restricted
theta operation and extended theta operation of soft sets" and
closely examining the algebraic structures associated with them
and other soft set operations in the collection of soft sets. With
the introduction of the so-called new operations in soft sets, an
understanding of the underlying algebraic structures is crucial.

This study is organized as follows: Section 2 serves as a
reminder of the basic ideas behind soft sets and other algebraic
structures. In Section 3, the new soft set operations are defined.
A detailed analysis is conducted on the algebraic characteristics
of the theta operation and extended theta operation.
Furthermore, we study how these novel soft set operations
distribute over the existing soft set operations. Considering the
distribution laws and the algebraic characteristics of the soft set
operations, an extensive analysis of the algebraic structures
formed in the set of soft sets over the universe using these
operations is presented. Our demonstration reveals that the
collection of soft sets throughout the universe forms several
significant algebraic structures, including semirings. A
comprehensive analysis expands on our knowledge of the
applications and consequences of soft set theory across several



fields. In the conclusion section, we discuss the significance of
the study's findings and their potential applications.

PRELIMINARIES

This section covers several algebraic structures as well as

some basic ideas in soft set theory.
Definition 1. (Molodtsov, 1999) Let U be the universal set, E
be the parameter set, P(U) be the power set of U, and TS E. A
pair (F, T) is called a soft set on U. Here, F is a function given
by F: T - P(U).

Throughout this paper, the collection of all the soft sets
over U (no matter what the parameter set is) is designated by
Sg(U) and S+(U) denotes the collection of all soft sets over U
with a fixed parameter set T, where T is a subset of E.
Definition 2. (Ali et al., 2011) Let (F,T) be a soft set over U. If
(x)=0 for every xeT, then the soft set (F,T) is called a null soft
set with respect to K, denoted by @¢. Similarly, let (F,E) be a
soft set over U. If F(x)=0 for every XeE, then the soft set (F,E)
is called a null soft set with respect to E, denoted by @ (Ali et
al., 2009). A soft set with an empty parameter set is denoted as
@y. It is obvious that @, is the only soft set with an empty
parameter set.

Definition 3. (Ali et al., 2009) Let (F,T) be a soft set over U. If
F(x)=U for every XeT, then the soft set (F,T) is called a relative
whole soft set with respect to T, denoted by Uy. Similarly, let
(F,E) be a soft set over U. If F(x)=U for every X€E, then the soft
set (F,E) is called an absolute soft set, and denoted by Ug.
Definition 4. (Pei & Miao; 2005) Let (F,T) and (G,Y) be soft
sets over U. If TEY and F(x) =G(x) for every XeT, then (F,T)
is said to be a soft subset of (G,Y), denoted by (F,T)E(G,Y). If
(G)Y) is a soft subset of (F,T), then (F,T) is said to be a soft
superset of (G,Y), denoted by (F,T)3(G,Y). If (F,T)E(G,Y) and
(G,Y)E(F,T), then (F,T) and (G,Y) are called soft equal sets.
Definition 5. (Ali et al., 2009) Let (F,T) be a soft set over U.
The relative complement of (F,T), denoted by (F,T)" =(F",T), is
defined as follows: F'(x)=U-F(x), for every x€T.

Cagman (2021), introduced two new complements as the
inclusive complement and the exclusive complement, which we
denote as + and 0, respectively. For two sets X and Y, these
binary operations are defined as X+Y=X"UY and X0Y=X"NY".
Sezgin et al. (2023c) investigated the relationship between these
two operations and also introduced three new binary operations:
For two sets X and Y, these new operations are defined as
X*¥Y=X"UY’, XyY=X"NY, XAY=XUY’ (Sezgin et al., 2023c).
Let """ be used to represent the set operations (i.e., here, x can
be N, U\, A, +,0, *, A,y). Then, all types of soft set operations
are defined as follows:

Definition 6. (Ali et al., 2009; Sezgin & Atagin, 2011; Ali et
al., 2011; Aybek, 2024) Let (F,T) and (G,Y) be two soft sets
over U. The restricted ~ operation of (F,T) and (G,Y) is the soft
set (H, Z), denoted by (F,T) xy (G,Y)= (H,Z), where Z=T N

MATHEMATICS, COMPUTER SCIENCE AND MECHANI%%

Y=+ @ and for every xe Z, H(X) = F(x) XG(x). Here, if Z=T N
Y =@, then (F, T) xg(G, Y)= @;.

Definition 7. (Maji et al., 2003; Ali et al., 2009; Sezgin et al.,
2019; Stojanavic, 2021; Aybek, 2024) Let (F, T) and (G, Y) be
two soft sets over U. The extended > operation (F, T) and (G,Y)
is the soft set (H,Z), denoted by (F, T) x.(G, Y) = (H, Z), where
Z=T U, and for every xe Z,

F(x), XET-Y
H(x) = G(x), XEY-T
F(x) » G(x), X€TNY

Definition 8. (Demirci, 2024; Sarialioglu, 2024; Akbulut, 2024)
Let (F,T) and (G, Y) be two soft sets over U. The
complementary extended i, operation (F,T) and (G,Y) is the

*
soft set (H,Z), denoted by (F, T) N (G,Y)=(H, 2), where Z =
€

T U, and for every xXe Z,

F'(x), XET-Y
H(x) = G'(x), XEY-T
F(x) @ G(x), x€TNY

Definition 9. (Calisic1 & Eren, 2019; Sezgin & Yavuz, 2023b;
Sezgin & Calisici, 2024, Yavuz, 2024) Let (F,T) and (G,Y) be
two soft sets on U. The soft binary piecewise i operation of
(F,T) and (G,)Y) is the soft set (H,T), denoted by

(F, T);(G, Y) = (H,T), where for every xe T,

_ F(x), XET—-Y
HE) = {F(x) X GX), xeETNY

Definition 10. (Sezgin & Demirci, 2023; Sezgin & Aybek,

2023; Sezgin et al. 2023a, 2023b; Sezgin & Atagiin, 2023;

Sezgin & Yavuz, 2023a; Sezgin & Dagtoros, 2023; Sezgin &

Cagman, 2024; Sezgin & Sarialioglu, 2024; Sezgin &

Sarialioglu, 2024) Let (F,T) and (G,Y) be two soft sets on U.

The complementary soft binary piecewise > operation of (F,T)
%

and (G,Y) is the soft set (H,T), denoted by (F,T)~(G,Y) =
X

(H, T), where for every xe T,

F'(x),

XET-Y
HCO = {F(x) ™ G(x),

XeETNY

For more about soft sets, we refer to (Mahmood et al.
2018; Jana et al., 2019; Mustuoglu et al., 2016; Sezer et al.,
2015b; Sezer, 2014; Sezgin, 2016; Atagin & Sezgin, 2018;
Sezgin, 2018; Sezgin et al, 2017; Sezgin et al., 2022; Lawrence
& Manoharan, 2023; Jabir et al. 2024).

Definition 11. (Clifford, 1954) Let (S, x) be an algebraic
structure. An element s €S is called idempotent if s?=s. If s?=s
for every s€S, then the algebraic structure (S,x) is said to be
idempotent. An idempotent semigroup is called a band, an
idempotent and commutative semigroup is called a semilattice,
and an idempotent and commutative monoid is called a bounded



semilattice.

In a monoid, although the identity element is unique, a
semigroup/groupoid can have one or more left identities;
however, if it has more than one left identity, it does not have a
right identity element, thus it does not have an identity element.
Similarly, a semigroup/groupoid can have one or more right
identities; however, if it has more than one right identity, it does
not have a left identity element, thus it does not have an identity
element (Kilp et al., 2001).

Similarly, in a group, although each element has a unique

inverse, in a monoid, an element can have one or more left
inverses; however, if an element has more than one left inverse,
it does not have a right inverse, thus it does not have an inverse.
Similarly, in a monoid, an element can have one or more right
inverses; however, if an element has more than one right
inverse, it does not have a left inverse, thus it does not have an
inverse (Kilp et al., 2001).
Definition 12. Let S be a non-empty set, and let "+" and "*" be
two binary operations defined on S. If the algebraic structure (S,
+, ) satisfies the following properties, then it is called a
semiring:

i. (S, +)isasemigroup.
ii. (S, %) is a semigroup,
iii.  Foreveryx,y, z €S, xx(y + z) = xxy + xxz and (X +y)
*Z = X*Z + Y*Z.

If for every x,y€S, x+y=y+z, then S is called an additive
commutative semiring. If for every x,y€S, xxy=yxx, then S is
called a multiplicative commutative semiring. If there exists an
element 1€S such that xx1=1xx=x for every xeS (multiplicative
identity), then S'is called semiring with unity. If there exists 0€S
such that for every xeS, 0xx=xx0=0 and 0+x=x+0=x, then 0 is
called the zero of S. A semiring with commutative addition and
a zero element is called a hemiring (Vandiver, 1934). We refer
to Pant et al. (2024) for the possible implications of network
analysis and graph applications with regard to soft sets, which
are defined by the divisibility of determinants.

RESTRICTED AND EXTENDED THETA OPERATION

The new restricted theta and extended theta operations for
soft sets are presented in this section. By examining the
distributive laws across various types of soft sets, it also talks
about their algebraic features and connections with other soft set
activities. Examining these operations' algebraic structures in
the Sg(U) set in conjunction with other specific kinds of soft set
operations yields some significant findings.

Restricted Theta Operation and Its Properties

Definition 13. Let (F,T) and (G,Z) be soft sets over U. The
restricted theta of (F, T) and (G, Z), denoted by (F, T)8r (G, Z),
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is defined as (F,T)0g(G,Z) = (H, C), where C=TNZ, and if
C=TNZ+#®, then for every aeC,

H(a)= F(a)0G(a)=F’(a)NG’(a);

if C= TNZ=0, then (F,T) B (G,Z)=(H, C)= 0.

Since the only soft set with empty parameter set is @y, if

C=TNZ= @, then it is obvious that (F,T) 6 (G,Z)= @,4. Thus,
in order to define the restricted theta operation of (F,T) and
(G,Z), there is no condition that TNZ= @.
Example 1. Let E={e;,e,,e;.e,}be the parameter set,
T={e,,e5} and Z={e,,e;e,} be subsets of E,
U={h,,h,, h;,h,, hs} be the universal set, (F,T) and (G,Z) be the
soft sets over U as (F,T)={(e;,{hy,hs), (e5,{hih;hs}}
(G,2)={( ez, {hy,hy,hs}) {(e5,{hs,h3,hs}).(e4, h3 hs )}

Here let (F,T)6r(G,2)=(H, TN Z), where foreverya € T N
Z={e3}.Thus,H(e3)=F’(e3) NG’(e3)={h3,h,}N{h;, hs}={
hy, hs, hy, hg}. Hence, (F,T)0(G,Z2)={(es, 8)}

Theorem 1. Let (F,T), (G,Z), (HM), (G,T), (H,T), (K,V) and
(L, V) be soft sets over U. Then, we have the followings:

1) The set Sg(U) is closed under 6.

2) [(F.T) 6r(G.,Z)] 6r(HM) # (F.T) 6g[(G.Z) Or(HM)].

3) [(F.T) 0r(G.T)] Or(H,T)#(F,T) Bg[(G,T) 6g(H,T)].

4) (F,T) 0 (G,2)=(G,Z) 6x(F,T).

5) (F,T) 6x(F,T)= (F, T)".

6) (F,T) Or@1=010x(F,T)=(F, T)".

7) (F,T) 0g Op=0n0r (F,T)=(F, T n M)".

8) (F,T)0r Og=0k 6R (F,T)=(F,T)".

9) (F,T)0r0p=0¢0r(F,T)= 0.

10) (F,T)0gUr= U 0x(F,T)= O.

11) (F,)8rUn=Uy Or(F,T)= Ornm-

12) (F,T)0gUg=UgOR(F,T)= @r.

13) (F,T) 6 (F,T)=(F,T)" Og(F,T)= @.

14) [(F,T) 0r(G,2)]'=(F,T) Ug (G,Z).

15) (F,T)8r(G, T)= Uy if and only if (F, T) = @r and (G, T) =
@T-

16) @rnz E(F,T) 6x(G,Z) and (F,T) 6x(G,Z) € Uy and (F,T)
8r(G,Z) € Uy

17) (F,1)8x(G,Z) € (F,T)  and (F,T)0x(G,Z) E(G,Z)".

18) If (F,T) € (G, Z), (F,T) 6x(G,Z) =(G,T)".

19) If (E,T) € (G,T), then (G,T) 6x(H,Z) E(F,T) Bx(H,Z) and
(H,2) 8 (G,T) E(H,Z) 0x(G,T).

20) If (G,T) 8x(H,Z) E(F,T)0g(H,2), then (F,T) € (G, T) needs
not be true. That is, the converse of Theorem 1 (19) is not ture.
2D If(F,T) € (G, T) and (K,V) € (L, V), (G,T) 8x(L,V) E(F,T)
Br (K,V). Similarly, (L,V) 8(G,T) E(K,V) 6% (F,T).

22) (F,T) 6g (G,Z) E(F,T) *g (G,Z) and (G,Z) 6y (F,T) E(G,Z2)
*g (F,T).

Proof. 1) It is clear that Oy is a binary operation in Sg(U). That
is,

eRZ SE(U)X SE(U)—> SE(U)



((F,T), (G,2)) = (F, T)Br(G,Z) =(H, TN Z)
Similarly,

Or: ST(U)x St(U)- St(V)
((F,T), (G,T) » (F, T)0g(G, T) =(H,TNn T)=(H,T)

That is, let T be a fixed subset of the set E and (F,T) and
(G, T) be elements of St(U), then so is (F,T)0g (G, T). Namely,
St(V) is closed under 6y either.

2) Let (F,T)0r(G,Z2)=(S,TNZ), where for every a€eTNZ,
T()=F(0)NG’(a). Let (S,TNZ)Ox(H,M)=(R,(TNZ)NM)),
where for every ae(TNZ)NM, R(a)=T’(a)NnH’(a). Thus,

R(a)=[F()UG(a)]NH’(x)

Let (G,Z) Br(H.M)=(K,ZNM), where for every aeZNM,
K()=G’(a)nH’(a). Let (F,T)6r(K,Z "M)=(S,TN(ZNM)),
where for every aeTN(ZNM), S(a)=F’(a)NK’(a). Thus,

S()=F*()N[G()UH ()]

Thus, (R,(T N Z) N M) #(S, TN(ZNM)). That is, in Sg(U),
the operation 6y is not associative. Here, it is obvious that if
TNZ= @ or ZNM= @ or TNM= @, then since both sides of the
equality is @y , the operation 6y is associative under these
conditions.

3) Let (F,T)0Rr(G,T)=(K,T), where for every aeTNT=T,
K(a)=F’(«)NG’(a). Let (K, T)0g(H,T) =(R,T), where for every
aeTNT=T, R(a)=K’(a)nH’(ct). Hence,

R(a)=[F()UG(a)]NH’(x)

Let (G,T)Oxr(H,T)=(L,T), where for every aeTNT,
L(a)=G’(a)nH’(a). Let (F,T) 6xg(L,T)= (N, T), where for every
aeTNT, N(a)= F’(a)NL’(at). Hence,

N(@)=F"(a) N [G(c)UH(a0)]

Thus, (R, T)#(N,T). That is, 6y is not associative in the
collection of soft sets with a fixed parameter set.
4) Let (F,T)6g(G,2)=(H,TNZ), where for every aeTNZ,
H(a)=F’(a)NnG’(a). Let (G,Z) Og(F, T)=(S,ZNT), where for
every aeZNT, S()=G’(ax)NF’(c). Thus,

(F,T) g (G,2)=(G,Z) Bg(F,T).

That is, 0 is commutative in Sg(U). Here it is obvious that
if TNZ= @ , then since both sides is @4, By is commutative in
Sg(U) under this condition. Moreover, it is evident that
(F, T)OR(G,T)=(G,T) 6x(F,T), namely, By is commutative in the
collection of soft sets with a fixed parameter set.

5) Let (F,T) Ogx(F,T)=(H,TNT). Thus, for every aeT,
H(a)=F’(a)NnF’(0)=F’(a). Hence (H,T)=(F,T)". That is, the
operation 6 is not idempotent in Sg(U).

6) Let@;=(S,T), where for every aeT, S(x)=@. Let
(F,T) 6x(S,T)=(H,TNT), where for every aeT,
H(o)=F’(a)nS’(0)=F’(a)nU= F’(a). Thus, (H,T)= (F, T)".
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7) Let @=(S,M), where for every aeM, S(a)=@. Let (S,M) 6
(F, T)=(H,MNT), where for every aeT,
H(o)=S(a)NnF’(x)=F’(«)nU= F’(ax). Thus, (H,TNM)=(F,T n
M)".

8) Let @x=(S,E), where for every acE, S(a)=@. S(a)=0. Let
(F,T)6r(S,E)=(H,TNE) where for every aeTNE=T,
H(a)=F’(«)NS’(a)=F’(a)nU= F’(a).Thus, (H,T)=(F, T)".

9) Let @,=(S, ®). Let (F, T)8x(S, 8)=(H,TNG). Since the
parameter set @y is the only soft set that is an empty set, (H,
?)=0y. That is, in the set Sg(U), the absorbing element of the
operation 6y is the soft set @y.

10) Let Ur=(K,T), where for every aeT, K(a)=U. Let
(F,T) 6r(K, T)=(H,TNT), where for every aeT, H(a)=
F’(0)NT’(a)=F’(a)n @=@. Thus, (H,T)= @.

11) Let Uy=(K,M), where for every aeM, K(a)=U. Let
(F,T) 6r(K,M)=(H,TNM), where for every a€eTNM,
H(a)=F’(0)NT’(e)=F’(a)N @=@. Thus, (H, TNM)= @rnpm-

12) Let Ug=(K,E), where for every ack, K(a)=U. Let
(F,T) 6r(K, E)=(H,TNE), where for every o€TNE=T,
H(a)=F’(0)NK’(c)=F’(a)N @=@. Thus (H,T)= Dr.

13) Let(F,T)'=(H,T), where for every aeT, H(a)=F’(a). Let

(F,THbg (H,T)=(L,TNT), where for every aeT,
L(a)=F’(a)nH’(a)=F’(a2)NF(a)=0. Thus, (L,T)= B.
14) Let (FT)6r(G,2)=(H,TNZ), for every aeTNZ,

H(a)=F’(«)NnG’(a). Let (H,TNZ)=(K,TNZ) where for every
aeTNZ, K(a)=F(a)UG(a). Thus, (K,TNZ)=(F,T) Ug (G,Z).
15) Let (F,T)0g(G,T) = (K,TNT), where for every aeT,
K(a)= F’(«)NnG’(a). Since (K, T)= Uy, K(a)=U, for every aeT.
Thus, K(a)=F’(a)nG’(a)=U, for every aeT<F(a)=U and
G’(a)= U, for every aeT < F(a)=0 and G(a)=0, for every
aeTe(F, T) = @r and (G,T)= @, for every aeT.

16) Obvious.

17) Let (F,T)0Rr(G,2)=(H,TNZ), where for every aeTNZ,
H(o)=F'(a) NG’(ax). Since, for every aeTNZ, H(a)=F'(a) N
G'(a) SF ().

Thus, (F,T)0x(G,Z)E(F,T)".
G'(a) €G’(a), (F,T)0R(G,Z) € (G,Z)".
18) Let (F,T) € (G,Z). Then, TSZ and for every a€T, F(a)S
G(a). Thus for all aeT, G’(a)<S F' ().

Let (F,T)0r(G,Z2)=(K,TNZ=T). Then, for every a€T,
K(a)=F’(0)NG’(a)=G'(a), hence (K, T)=(F,T) 0x(G,Z)=(G,T)".
Conversely let (F,T)0r(G,Z) =(G,T)". Hence, TNZ=T, and so
T<Z. Also, for every aeT, F(0)NG’(0)=G'(a), and so
G’(0)SF’(a). Thus, for all aeT, F(a)SG(a), (F,T) € (G, Z).
19) Let (F,T) € (G, T). Thus for every aeT, F(a)S G(«)
and for every «aeT, G (a)SF’(a). Let
(G,T)Br(H,2)=(K,TNZ). Thus for every oaeTNZ,
K(a)=G’(a)nH’(a). Let (F, T)0g (H,2)=(L,TNZ). Hence
for every aeTNZ, L(a)=F(a)NnH’(a). Thus,
K(a)=G’(a)nH’()SF’(a)nH’(a)=L(at),  for  every
aeTNZ, hence, (G,T) Bg(H,Z) € (F,T) Bx(H,2). Itis clear

Similarly, since F’(a) N



from the commutative property that, under the same conditions,
(H,2) 0x(G, T)E(H,2)0x(G,T) will be achieved.

20) We give a counterexample to show that the converse of
Theorem 1 (19) is not true. Let E={e,,e,,e3,e,4, €5} be the
parameter set, T={e,,e3}, K={e;,e3,es}, and Z={e,,es, es,
eq} be the subsets of E, U={h,,h,, h3,h,, hs} be the universal
set, and (F,T), (G, T) and (H,Z) be the soft sets as follows:
(F,T)={(e1,{hz, hs,}),(e3,{h1,hy,hs, D}(G, T)={(es,,{h2}).(e5,
{h;,h;H}.(H.2)={(e;,,U).(e5 V).(es .{hs hs H)}.

Let (G,T) 6g(H,2)=(L, TN Z), where for every a e TN
Z={er,e3},  L()=G'(0) NH(a),  L(e;)=G’(e;)H'(e1)=9,
L(e3)=G’(e3) NH(e3)=@. Thus, (G, T)0x(H,2)={(e,, D),
(e, ©)}. Now let (F,T)6r(H,2)=(K,TNZ), where for every o €
T N Z={e;, e3}, K(a)=F’(a) NH’(a),K(e1)=F’(e;) NH’(e;)=0,
K(e;)=F’(e3) NH’(e3)=0@. Thus, (F,T)08r(H,Z2)={(e,, D),
(e3,9)}

It is observed that (G,T)6r(H,Z2) E&(F.T)6x(H.,2);
however then (F,T) € (G, K) needs not be true.

21) Let (F,T) € (G, T) and (K,V) € (L, V). Thus, for every aeT
and for every aeZ, F(a)S G(a) and K(a)< L(a). Hence, for
every aeT, G’(«)< F'(a) and for every aeZ, L’(ax)<S K'(a). Let
(G, Toeg (L2D=(MTNZ). Thus, for every aeTnZ,
M(a)=G’(a)nL’(a). Let (F,T)0r (K,Z2)=(N,Tn Z). Thus, for
every aeTn Z, N(a«)=F’(«)nK'(at). Since, for every aeTn Z,
G’(a)E F'(a) and L’ ()< K' (o), M(a)=G’(a)NL’(a)E F'(a) N
K’'(a) = N(a). Thus, (G,T) 6 (L,V) E(F,T) 8 (K,V).

22) Let (F,T)0r(G,Z)=(M,TN Z). Hence, for every aeTn Z,
M(a)=F’(0)NG’(a). Let (F,T)*g(G,Z)=(N,TNZ). Thus, for
every a€TN Z, N(o)=F’(0)UG’(a).

Since M(a)=F’(0)NG’(a)SF’(0)UG’(a)=N(a), it implies
that (F,T)0x(G,Z)E(F,T)*Rr(G,Z).

Theorem 2. Let (F,T), (G,Z), and (H,M) be soft sets over U.
Then, restricted theta operation distributes over other soft set
operations as follows:

Theorem 3. Let (F,T), (G,2), and (H,M) be soft sets over U.
Then, restricted theta operation distributes over other restricted
soft set operations as follows:

i) LHS Distributions:

D(F,DORI(G.2)NR(HM)]=[(F,T) 8r(G,2)]Ug [(F,T) 6r(H,M)
1.

Proof. Consider first the LHS. Let (G,Z)ng(H,M)=(R,ZNM),
where for every aeZNM, R(a)=G(a)NH(a). Let
(F,T) 8g(R,ZNM)=(N,TN(ZNM)), whee for every
aeTN(ZNM), N(a)=F’(ax)nR’(cr). Thus, for every aeTNZNM,

N(e)=F*(c)n[(G’()UH’ ()]

Now consider the RHS, e [(F,T)0r(G,Z2)]
Ug [(F,T) Bg(H.M)]. Let (F,T) B (G,2)=(V,TNZ), where for
every aeTNZ, V(a)=F’(0)NG’(a) and let
(F,THBr (HM)=(W,TNM), where for every aeTNM,
W(a)=F’(a)nH’(a).
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Let (V,TNZ) Ug(W,TNM)=(S,(TNZ)N(TNM)), where for
every aeTNZNM, S(a)=V(a)UW(a). Thus,

S()= [F’()NG’ () JU[F" (e)NH ()]

Hence, (N,TNZNM)=(S,TNZNM). Here, if TNZ=0 or
TNM=@ or ZNM=0, then both sides is @4. Thus, the equality
is satisfied in all circumstances.

2)(F.T) 6r[(G.Z) Ur(HM)]=[(F,T) 6r(G,2)]NR[(F,T) B (H.M
)]

3)(F.T) br [(G.Z) * r(H.M)]=[(F.T) yr(G.2)]Ng[(F.T) yr (H,
M)].

4)(F.T) bg [(G.Z) 6r(HM)]=[(F,T) yr(G,2)]UR[(F,T) yr (H.M
)]

ii) RHS Distributions:

DIEF,T) Ur(G,2)]0r(H,M)=[(F,T) 0 (H,M)]NR[(G.Z) 6 (H
M)].

Proof. Consider first the LHS. Let (F,T) Ur(G,2)=(R,TNZ),
where  for every aeTNZ, R(a)=F(a)UG(x). Let
(R,TNZ) 6 (H.M)=(N,(TNZ)NM)),  where  for
as(TNZ)NM, N(a)=R’(a)nH’(ax). Thus,

every

N(0)= [F’(0)NG’()]NH ()

Now consider the RHS, i.e., [(F.T)0g(HM)] Ny
[(G,Z2) 6g (HM)]. Let (F,T)6g(HM)=(S,TNM), where for
every aeTNM, T(a)=F’(a«)nH’(a) and let (G,Z) 6 (H,M)=
(K,ZNM), where for every aeZNM, K(a)=G’(a)nH’(a).
Assume that (S,TNZ) Nr(K,ZNM)=(L,(TNZNM)), where for
every ae(TNZ)N(ZNM), L(a)=S(a)nK(c). Thus,

L(c)= ([F*(0)NH’(a)] N [G*(a)NH(a0)]

Hence, (N,TNZNM)=(L,TNZNM). Here, if TNZ=Q or
TNM=0 or ZNM=0, then both sides is @4. Thus, the equality
is satisfied in all circumstances.
2)[(F,T)Ng (G,2)]0r(H,M)=[(F,T) 6g(H,M)]UR[(G,Z) 6r(H.M
)]

3)(F.T) 6r(G.2)]6g (HM)=[(F,T)\r(H,M)]Ug [(G,Z)\r(H.M

)]

4)[(F,T) * r(G,2)]0r(H.M)=[(F,T) \r (H.M)INg [(G,Z) \r (H,

M)].

Theorem 4. Let (F,T), (G,2), and (H,M) be soft sets over U.
Then, restricted theta operation distributes over extended soft
set operations as follows:

i) LHS Distributions:

D(F.T) 6r[(G.Z) N(HM)=[(F,T) 6r(G.Z)] Ne[(F,T) 6z (HM
)L

Proof. Consider first the LHS. Let (G,2) N, (H,M)=(R,ZUM),
where for every aeZUM,;

G(a), aEZ—M
R(a) = H(a), AEM—-1Z
G(@)NH(a), a€ZnNM



Let (F,T)0r(R,ZUM)=(N,(TN(ZUM)), where for every
acTN(ZUM), N(a)=F’(a)NR’(a). Thus,

F'(a) N G'(0), a€ETN(Z-M)
N(a) = F'(a) N H'(a) aeETN(M—12)
F(@)N[G'(0) UH ()], aeTn(ZnM)

Now consider the RHS, ie. [(F,T)6Rr(G,Z)] N,
[(F,T) 6g (H,M)]. Let (F,T)0r(G,Z2)=(K,TNZ), where for every
aeTNZ, K(ao)=F’(a)NG’(a) and let (F,T)0gr(H,M)=(S,TNM),
where for every oaeTNM, S(a)=F’(a)NH’(a). Let
(K,TNZ) N(S,TNM)=(L,(TNZ)U(TNM)), where for every
as(TNZ)U(TNM),

K(a),

ae (TNZ)—(TNM)
L) = { S(a),
K(o) N S(w),

ae(TNZ)—(TNM)
ae(TAM)N(TNZ)

Thus,
F'(a) N G'(a), a€ETNZNM
L(a) = F'(a) N H'(a) a€ETNZ NM
F(@N[G'(@)UH ()], aeTNZnNM

Hence, (N, TN(ZUM))=(L, (TNZ)U(TNM)). Here, if
TNZ=0, then N(«)=L(a)=F’(a)NH’(ax); and if TNM=0, then
N(a)=L(a)=F’(«)NG’(ax). Thus, there is no extra condition as
TNZ+ @ and/or TNM= @ for satisfying Theorem 4 (i).
2)(F,T) 8r[(G.2) U(H.M)]=[(F.,T) 6r(G.,Z)] N[(F.T) 6g (HM
)]

ii) RHS Distributions:

DIF.TU(G,2)] 8r(HM)=[(F,T) 6r(HM)] N [(G,Z) B (H,
M)].

Proof. Consider first the LHS. Let (F,T) U.(G,2)=(R,TUZ),
where for every ae TUZ,

F(a), a€T-2Z
R(a) = G(a), a€Z-T
F@UuG(a), a€TNZ

Assume that (R,TuZ) 8x(H,M)=(N,(TUZ)NM)), where
for every ae(TUZ)NM, N(a)=R’(a«)nH’(a). Thus,

F'(0) N H' (), ae(T—-Z)NnM
N(a) = { G'(a) N H' (), ae(Z-T)NM
[F(@)NnG'(@]nH(a), ae(TNZ)NM

Now consider the RHS. Let (F,T) g (HM)=(K,TNM),
where for every aeTNM, K(a)=F’(a)nH’(a) and let
(G,2) 8g (HM)=(S,ZNM), where for every a€ZNM, S(a)=
G’(a)NH (). Let (K, TNM) Ng(S,ZNM)=(L,(
(TNM)U(ZNM)). Hence,

K(o),

S(a),

ae (TNM)—(ZnM)
L(a) = {
K(a) N S(a),

ae(ZnM)—(TnM)
ae(TnM)n(ZnM)
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Thus,

F'(a«) N H' (), aeTNZ NM
L(a) = G'(0) N H'(a) aeT"NZNM
[FF(@) NG (@]NnH(a), aeTNZNM

Therefore, (N,(TUZ)NM)) = (L,(TNM)U(ZNM)). Here, if

TNZ=@ and aeTNZ’NM, then N(a)=L(a)=F’(a«)NH’(a) and if
TNZ=@¢ and aeT’NZNM, the N(a)=L(c)=G’(a)NH’(cx).
Furthermore, if ZNM=@, then N(a)=L(c)=F’(c)NH’(ax). Thus,
there is no extra condition as TNZ# @ and/or ZNM= @ for
satisfying Theorem 4 (ii).
2)[(F.T) Ne(G,2)] Or(HM)=[(F.T) 8r(G.2)]U:[(G,Z) Br (HM
)1
Theorem 5. Let (F,T), (G,2), and (H,M) be soft sets over U.
Then, restricted theta operation distributes over complementary
extended soft set operations as follows:

i) LHS Distributions:

D(E.T) 6:[(G.2) :  EMIET) yr(GOIN[(F.T) yr (H,
M)].

*
Proof. Consider first the LHS. Let (G,Z)* (H,M)=(R,ZUM),
€

where for every aeZUM,

G' (o), a€EZ—M
R(a) = H(a), aAEM-7Z
G(@UH (), a€ZNM

Let (F,T)0r(R,ZUM)=(N,(TN(ZUM)), where for every
aeTN(ZUM), N(«)=F’(0)nR’(c). Thus,

F'(a) N G(a), a€TN(Z-M)
N(a) = F'(a) N H(a) aeTN(M-127)
F'(a0) N [G(a) NH()], a€TnN((ZNM)

Now consider the RHS, ie [(F,T)ygr(G,2)]

N[(F,T) yr (HM)]. Let (F,T) yr (G,2)=(K,TNZ) where for
every aeTNZ, K(a)=F’(a)NG(a).

Let (F, T)yr(H,M)=(S,TNM), where for every aeTNM,
S(0)=F’(x)NH(a). Assume that (K,TNZ)N(S,TNM)=(
L,(TNZ)u(TNM)), where for every ae(TNZ)U(TNM),

K(a),

ae(TNnZ)—(TnM)
L(o) = { S(a),
K(o) N S(a),

ae (TNZ)—(TNM)
ae(TAM)N(TNZ)

Thus,
F'(a) N G(a), a€TNZNM
L(a) = F'(a) N H(a) a€ETNZ NM
F(a) N[G(e) UH(a)], a€eTNZNM

Therefore, (N,(TN(ZUM))=(L,(TNZ)U(TNM)). Here, if
TNZ=@, then N(a)=L(a)=F’(0)NH(ax); and if TNM=@, then



N(a)=L(a)=F’(«)NG(a). Thus, there is no extra condition as
TNZ+ @ and/or TNM= @ for satisfying Theorem 5 (i).

2)(F.T) R [(G.2) >SS(H,M)]:[(F,T) Yr(G,Z)] UR[(F.T) yr (H,
M)].
ii) RHS Distributions:

DIET) ;Z (G,2)16r(HM)=[(F,T) \r(H,M)]U,[(G,Z) \r (H.M
)]
Proof. Consider first the LHS. Let (F,T) z (G,2)=(R,TUZ),

where for every aeTUZ,;

F'(a), a€ET—-Z
R(a) = G' (), a€EZ-T
F(@)NG'(a), a€TNZ

Let (R,TUZ) 6g(H,M)=(N,(TUZ)NM), where for every
ae(TUuZ)NM, N(a)=R’(a)NH’(a). Thus,

F(o) N H'(a), ae(T-Z)NM

N(a) = { G(a) N H'(a) ae(Z-T)nM

[F@UG@]NnH (@), ae(TNZ)NM
Now consider the RHS, ie. [(F,T)\rHM)]
U[(G,Z) \r (H,M)]. Let (F,T)\r(H,M)=(K,TNM), where for
every acTNM, K(o)=F(a)nH’(x) and let
(G,2) \rHM)=(S,ZNM), where for every a€ZNM,

S(a)=G(x)NH’ ().
Assume that (K,TNM)U.(S,ZNM)=(L,(TNM)U(ZNM)),
where for every ae(TNM)U(ZNM),

K(a),

ae(TnM)—-(ZnM)
L) = { S(a),
K(a) U S(a),

ae(ZNM)—(TnM)
ae (TNM)N(ZNM)

Thus,
F(a) N H' (o), aeTNZ NM
L(a) = G(a) N H'(a) aeT'NZNM
[F@WUG(]NH (@), aeTNZNM

Therefore, (N,(TUZ)NM)=(L,(TNM)U(ZNM)). Here, if
TNZ=@ and aeTNZ’NM, then N(a)=L(a)=F(a«)nH’() and if
TNZ=@ and oa€T’NZNM, the N(a)=L(a)=G(ax)"H’(a).
Furthermore, if ZNM=@, then N(a)=L(a)=F(a)NH’(ax). Thus,
there is no extra condition as TNZ+ @ and/or ZNM= @ for
satisfying Theorem 5 (ii).

2ET) : (GO Br(HM=(F.D\R(G.2)]NLG.2) \r (H.M)

].

Theorem 6. Let (F,T), (G,2), and (H,M) be soft sets over U.
Then, restricted theta operation distributes over soft binary
piecewise operations as follows:

i) LHS Distributions:
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].
Proof. Consider first the LHS. Let (G,Z); (HM)=(R,Z), where
for every aeZ;

ae’Z—M
aeZNM

_ G(),
R(e) = {G(a) N H(),

Let (F,T)0r(R,Z)=(N,TNZ), where for every aeTNZ;
N(a)=F’(a«)NR’(a). Thus,

F'(o) N G(c0),

B aeTnN(Z-M)
N(a) = {F’(a) N [G'(a) UH ()],

aeTN(ZnNM)
Now consider the RHS. Let (F,T)0r(G,2)=(K,TNZ),
where for every aeTNZ; K(a)=F’(a)NG’(a).
Let (F,T) 6g (H,M)=(S,TNM), where for every aeTNM;
S(a)=F’(a)NH’(ax) and assume that
(K.TNZ),, (S.,TNM)=(L.TNZ), where for every aeTNZ;

_ K(a), ae(TNZ)—(TNM)
L = {K(a) US(w), ae(TNZ)Nn(TNM)
Thus,
L) = F'(a) N G'(0), ae(TNZ)—(TNM)
(@ = {F’((x) NG UH (@], aeTn(@ZnM)
Hence (N,TNZ)=(L,TNZ). Here, if TNZ=@, then
(N,TNZ)=(L.TNZ)=0,; and  if  TNM=@,  then

N(a)=L(a)=F’(an)G’(a). Thus, there is no extra condition as
TNZ# @ and/or TNM= @ for satisfying Theorem 6 (i).

2)(F.T) 0[(G.,2) ,(HM)I=[(F.T)0(G.2)] 1 [(F,T) 8 (H,M)]

ii) RHS Distributions:

D[(F.T) (G.2)] g (HM)=[(F.T) Bx(HM)] - [(G.Z) 6 (H.M)
]-

Proof. Consider first the LHS. Let (F,T) G (G,2)=(R,T) , where
for every aeT,;

aeT—-7Z
aeTNZ

_{ Fl,
R ={r 0y 6
Let (R,T)0r(H,M)=(N,TNM), where for every aeTNM;
N(a)=R’(a)nH’(a). Thus,
F'(a) N H' (o),

) ae(T-Z)nM
N(a) = {[F’(oc) NG (W] NH (@),

ae(TNZ)NM

Now consider the RHS. Let (F,T)0x(H.M)=(K,TNM),
where for every aeTNM; K(a)=F’(a)nH’(a). Assume that
(G,2) 8r (H,M)=(S,ZNM), every o€ZNM;
S(a)=G’(a)NH’(a) and let (K,TNM) ;(S,ZOM):(L,TOM),
where for every aeTNM;

where for



K(w),

~ ae(TAM) - (ZnM)
L(o) = {K(oc) N S(a),

ae (TNM)N(ZNM)

Hence,
L _{ F'(a) N H'(a), ae(TNM)—(ZnM)
@ =P nC@]nH@, oeTnZ)nM
Thus, (N,TAM)=(L,TNM). Here, if TNM=@, then
(N, TNM)=(L, TNM)=0¢; and if ZNM=9, then

N(a)=L(a)=F’(a)nH’(a). Thus, there is no extra condition as
TNM= @ and/or ZNM= @ for satisfying Theorem 6 (ii).

1.

Extended Theta Operation and Its Properties

Definition 14. Let (F,T) and (G,Z) be soft sets over U. The
extended theta operation of (F,T) and (G,Z) is the soft set

(H,C), denoted by (F,T) 6, (G,2)=(H,C), where C=TUZ and for
every aeC,

F(a), a€eT-7Z
H(a) = G(a), a€Z-T
Fl@nG'(a), a€TNZ

From the definition, it is obvious that if T=@, then
(F,T0.(G,2)=(G,2); if Z=@, then (F,T)0.(G,2)=(F,T); if
T=Z=0, then (F,T)0.(G,Z2)= @y.

Example 2. Let E={e,.e,,e;e,}be the parameter set,
T={e,,e5} and Z={e,e;e,} be subsets of E,
U={h;,h,, h3,h,, hs} be the universal set, (F,T) and (G,Z) be the
soft sets over U as
(F,T)={(ey,{hy,hs),(e5,{hy,h;,hsH}(G,2)={( e2.{h1,hy,hs}),

{(egi{h2|h31h4})1(e4’ h3,h5})}. Here let (F,T)
0:(G,2)=(H,TuZz), where for every aeTUZ,
F(x), a€T-7Z
H(a) = G(o), a€EZ-T
F())NG'(a), a €ETNZ
Since  T-Z={e;}, Z-T={eje,}, TNZ={e;}, thus,

H(e1)=F(e1)={h; hs},H(e;)=G(ez)={hy,hs hs},H(es)=G(es)=
{hs,hs}, H(es)=F’(e3) NG’(e3)={hs,hs}N {hy, hs}=@. Thus,
(FiT)es(Giz):{(el!{hZ,hS})! (eZ!{hl!h4lh5})l (63, @): (64,{ h3
hs})}

Remark 1. In the set St(U), where T is a fixed subset of E,
restricted and extended theta operations coincide with each
other. That is, (F,T) 8.(G,T)=(F,T) 6g(G,T).

Theorem 7. Let (F,T), (G,Z), (HM), (G,T), (H,T), (K,T) and
(L, T), be soft sets over U. Then, we have the followings:

1) The set Sg(U) and St(U) are closed under 6,.

2) If TNZNM=0, then [(F,T)08(G,Z)] 6:.(H,M) = (F,T) 6,
[(G.Z) 6. (H.M)].

3) [(F,T) 6(G,T)] 6 (H,T) # (F,T) 8[(G,T) 6 (H,T)].

4) (F,T) 8.(G,2)=(G,Z) 6, (F,T).
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5) (F,T) 6.(F,T)= (F, T)".

6) (F.T) 6.07=010. (F,T)=Ur.

7) (F,T)0:.04,=(F,T).

8) @y 8.(F,T)=(F,T).

9) (F,T)6.,Ur = Up6.(F, T) = @r.
10) (F,T) 8.(F,T)= (F,T)"® (F,T)= @r.

11) [(F,T) 6.(G,2)]'=(F,T) ~ (G,Z).

U
12) (F,T)6,(G,T)= Ug if and only if (F,T) = @1 and
(GT) = 0.
13) @; E(F,1)0.(G,Z),
(F.T)8¢ (G,Z) € Uryz.
14) (F,T)6.(G,T) € (F,T) and (F,T)68.(G, T) € (G,T)".
15) If (F,T) € (G, T), (F,T)0.(G,T) =(G,T)".
16) If (FTE (GT), (GT)8.(HTE(F,T)0.(H,T).
converse is not true.
17) If (F,T) € (G, T) and (K, T) € (L, T), (G,T) 8,(L,T) E(F,T)
0.(K,T).
18) (F,T) 0, (G,Z) E(F,T) *¢(G,Z) and (G,Z) 6,(F,T) E(G,Z) *,
(F,T).

@5 E(F,T)0.(G,Z). Moreover,

The

Proof. 1) It is clear that 6, is a binary operation in Sg(U). That
is,

esi SE(U)X SE(U)—) SE(U)
((F, M), (G,2)) » (F,B.(G,2)=(H,Tuz)

Namely, when (F,T) and (G,Z) are soft set over U, then so
(F,T) 6, (G,2) . Similarly, St(U) is closed under 6,. That is,
981 ST(U)X ST(U)—> ST(U)
((F,T), (G,T) = (F, T)b.(G, T)=(K,Tu T)=(K,T)

Namely, 6, is a binary operation in St(U).
2) First, consider the LHS. Let (F,T)0.(G,2)=(S,TuZ), where
for every aeTUZ,

F(a), a€ET-7Z
S(a) = G(w), a€EZ—-T
F(@)NG'(a), a€TNZ

Let (S,Tuz)8.(H,M)=(N,(TuUZ)uM)), where for every
ae(TUZ)uM,

S(a), ae(TUZ)—M
N(a) = { H(a), aeM—-(TUZ)
S'(@)nH'(a), ae(TUZ)NM
Thus,
F(a), ae(T-Z)—M
G(a) ae(Z-T)—-M
F'(a) N G'(a) ae(TNZ)—M
N(a)=< H(a), a € M-(TuUZ)
F’'(a) N H'(a), ae(T—Z)NM
G'(a) N H' (), ae(Z-T)nM
[F(a) U G(a)] N H'(a) a € (TNZ)nM



Now consider the RHS. Let (G,Z) 8.(H,M)=(R,ZUM),
where for every aeZUM;

G(x), aeZ—-M
R(a) = H(a), aeM-1Z
G(@nNH (), aeZnM

Let (F,T)8:(R,ZUM)=(L,(TU(ZUM)), where for every
aeTUZUM;

F(a), aeT—(ZUM)
L(a) = R(a), ae(ZUM)—-T
F(@)NR'(a), aeTn (ZUM)

Hence,
F(a), aeT—(ZUM)
G(a) ae(Z-M)—T
H(o) aeM—-Z)—T

L(a)=1{ G'(a) N H' () ae (ZnM) —T
F(a) NG () aeTn(Z—-M)
F'(a) N H' () aeTn(M—1Z)
F'(a) N [G(a) UH()] a € TN(ZNM)

It is observed that (N,(TuZ)uM)=(L,TU(ZUM)), where
TNZNM=@. That is, in Sg(U), 6, is associative under certain
conditions.

3) The proof follows from Remark 1 and Theorem 1 (3). That
is, in Sp(U), where T is a fixed subset of E, 6, isnot associative.
4) Let (F,T) 6.(G,2)=(H,TuZ), where for every aeTUZ,

F(x), a€T-7Z
H(a) = G(o), a€EZ-T
F())NG'(a), a €TNZ

Let (G,Z) 6.(F,T)=(S,ZUT), where for every aeZUT,

G(a), a€EZ—-1Z
S(a) = F(a), a€ET—-Z
G(@NF'(a), a€ZNT

Thus, (F,T)6.(G,2)=(G,2) 6.(F,T). Moreover, it is
obvious that (F,T) 6, (G,T)=(G,T)8.(F,T). That is, in Sg(U)
and S(U), 6, is commutative.

5) The proof follows from Remark 1 and Theorem 1 (5). That
is, in Sg(U), 8, is not idempotent.

6) The proof follows from Remark 1 and Theorem 1 (6).

7) Let §4=(S,0) and (F,T) 6.(S, 8)=(H,Tu®), where for every
aeTUD=T,

F(a), aeT—-@0=T
H(a) = S(a), aeE®d —T=0
F(a)nS'(a), aeTN@=0

Thus, H(ax)=F(a), for every aT, implying that (H,T)=(F,T).
8) Let @4=(S,@) and (F,T) 6.(S, @)=(H,Tu®), where for every
aeTUQ=T,
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S(a), aeEd—-T=290
H(a) = F(a), aeT—-Q0=T
S(@NnF(a), aednT=0

Thus, for every aeT, H(a)=F(a), (H,T)=(F,T).

By Theorem 7 (7) and (8), we can conclude that in Sg(U),
the identity element of 6. is the soft set @4. In classical set
theory, it is well-known that AUB=0<A=0 and B=@. Thus, it
is evident that in Sg(U), we cannot find (G, K) € Sg(U) such that
(F, T) 6.(G,K)= (G,K) 6.(F, T) = @y; as this situation requires
that T UK=0 and thus, T=@ and K=@. Since in Sg(U), the only
soft set with an empty parameter set is @, it follows that only
the identity element @, has an inverse and its inverse it its own
as usual. Thus, in Sg(U), any other element except @, does not
have an inverse for the operation 6,.

Corollary 1. Let (F,T), (G,2), and (H,M) be the elements of
Se(U). By Theorem 7 (1), (2), (4), (7) and (8), (Sg(U), 6,) is a
commutative monoid whose identity is @5 where TNZNM=0.
Since (Sp(V), 6,) is not associative, where A is a fixed subset
of E, this algebraic structure can not be a semigroup.

9) The proof follows from Remark 1 and Theorem 1 (10).

10) The proof follows from Remark 1 and Theorem 1 (13).

11) Let (F,T) 6.(G,2) =(H,TuZ), where for every aeTUZ,

F(o), a€eT-7Z
H(a) = G(), a€EZ-T
F())NG'(a), a€TNZ

Let (H,TuZ)" =(K,TuZ), for every aeTUZ,
F'(a), a€ET—-7Z

K(a) = G'(), a€Z-T
Fl@uG(a), a€TNZ

Thus, (K, TuZ)= (F,T) ~ (G,2).
U

12) The proof follows from Remark 1 and Theorem 1 (15).
13) The proof is obvious.

14) The proof follows from Remark 1 and Theorem 1 (17).
15) The proof follows from Remark 1 and Theorem 1 (18).
16) The proof follows from Remark 1 and Theorem 1 (19) and
(20).

17) The proof follows from Remark 1 and Theorem 1 (21).
18) Let (F,T)0:(G,Z2)=(H,TUZ), where for every aeTUZ,

F(a), a€ET-7Z
H(a) = G(w), a€EZ-T
F(@)NG'(a), a€TNZ

Let (F,T) *. (G,2)=(K,TUZ) , where for every aeTUZ,

F(a), a€T-1Z
K(a) = G(), aEZ-T
F(a)uG'(), a€TNZ



for every aeT-Z; H(a)=F(a) SF(a)=K(a), for every aeZ-T;
H(a)=G(a)=G(a)=K(a), forevery a€TNZ; H(c)=F(a)
NG’ (a)SF’ (a)UG’(a)= H(), (F,A)8.(G,B) € (F,A) =, (G, B)
is obtained.

Theorem 8. Let (F,T), (G,2), and (H,M) be soft sets over U.
Then, extended theta operation distributes over other soft set
operations as follows:

Theorem 9. Let (F,T), (G,2), and (H,M) be soft sets over U.
Then, extended theta operation distributes over extended soft set
operations as follows:

i) LHS Distributions

The following equations are satisfied if Tn (ZAM)=TZ NM=0.
1)(F.T) 0:[(G,Z) U(HM)=[(F.T) 0:(G,Z)]Ue[(F,T) 6, (HM).
Proof. Consider first the LHS. Let (G,Z) U¢(H,M)=(R,ZUM),
where for every aeZUM,

G(w), aeZ—M
R(a) = H(a), aeEM—-7Z
G(o)UH(a), a€eZnM

Let (F,T)0.(R,ZUM)=(N,(TU(ZUM)), where for every
aeTU(ZUM);

F(a) aeT—(ZUM)
N(a)={ R(a) a€e(ZUM)-T
F(@)NnR(a) aeTn(ZUM)
Thus,
F(a), aeT—(ZUM)
G(a), ag(Z—M)—T
H(a), aeM—-Z)-T
N(a)=4 G(a) U H(), ae(TNZ)—-T
F' (o) NG (o), aeTn(Z—-M)
F'(a) N H'(a), aeTN(M—-12)
F(o) n [G'(a) N H ()], as(T NZ)NM
Now consider the RHS,

i.e.[(F,T) 6.(G,Z2)]JU[(F,T) 6. (H.M)]. (F, T)0(G, Z)=(K, TuZ),
where for every aeTUZ,;

F(a), aET-Z
K(a) = G(a), a€Z-T
F(@)NnG'(a), a€TNZ

Let (F,T) 0, (H,M)=(S,TUM), where for every aeTUM;

F(o), a€e€T—-M
S(a) = H(a), AQEM-T
F'(a)NH' (), a €TNM

Assume that (K,TuZ) U, (S,TUM)=(L,(TUZ)U(TUM)),
where for every ae(TUZ) U (TUM) Thus,

K(a),

ae(TUuZ)—(TuM)
L(a) = { S(w),
K(a) U S(a),

ae(TUM) —(TUZ)
ae(TUM) —(TUZ)
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Thus,

F(o), ae(T—-27Z)—(TuM)
G(a), « € (Z—T)-(TUM)
F'(a) N G (), a € (T NZ)— (TuM)
F(a), ae(T—M)—(Tuz)
H(a), aeM—T)— (TUZ)=0
F'(a) N H' (), a € (T N M) — (TuZ)
F(a) U F(), ae(T—2)n(T—M)
L(a) ={ F(a) UH(), ae(T—2Z)nM—T)=¢
F() U [F'() NH' ()], ae(T=2)n(TNnM)=0
G(a) U F(), ae(Z-T)n(T—-M)=0
G(a) UH(), ae(Z-T)NM—=T)
G@U[F(@NH@] aeZ-T)N(TNM)
[F'(0) NG ()] UF(), a € (TNZ)N (T —M)=0
[F(@NG@]UH@ ae(TNnZ)n(M-T)
[F(e) nG()]V [F(a&) nH(@)],aeTNZNM
Hence,
G(q), aeT'nZNM
H(a), aeT'NZ'NnM
F(a), aeTNZ NM
L(a)={ F(a) U H' (), aeTNZ NM
G(a) U H(a), aeT'NZNM
G’(o) U H(), aeTNZNM
F'(o0) n[G'(a) U H' ()], aeTNZNM
Therefore, N=L under the condition

TNZNM=TNZNM’=TNZNM=@. It is obvious that the
condition TNZ’NM=TNZNM’=@ is equivalent to the
condition TN (ZAM)=0.

2)(E,T) 8:[(G.Z2) N.(HM)]=[(F.T) 0:(G,Z)]U.[(F,T) 8 (H.M)]

ii) RHS Distributions

The  following satisfied if
(TAZ)NM=TNZNM=0.

DI(E.T) Ne(G,2)] 8.(HM)=[(F,T) 8.(H,M)IN[(G.Z) 6, (HM
)]

Proof. Consider first the LHS. Let (F,T)n.(G,2)=(R,TUZ,

where for every aeTUZ,;

equations  are

F(a), aeT—12Z
R(a) = G(), a€eZ—-T
Fl@)NnG(a), ae€TNZ

Let (R, Tuz)8.(H,M)=(N,(TUZ)UM).Thus, for
ae(TuzZ)uM;

every

R(a), ae(TUZ)—M
N(a) = H(a), aeM—-(TUZ)
R'(e) nH'(a), ae(TUuZ)nM

Hence,



F(c), ae(T—Z)—M
G(o), ae(Z-T)—M
H(), aeM—(TUZ)
N(o)={ F(a) N G(0), ae(TNZ)—M
F'(a) N H'(a), ae(T-Z)NM
G'(a) N H' (), acs(Z-T)NnM
[F'(0) UG ()] nH (), a € TN(ZNM)

Now consider the RHS. Let (F,T)6.(H,M)=(S,TUM),
where for every aeTUM,;

F(o), a€T—M
S(a) = H(a), aEM-T
F(@)NH' (), a €TNM

Let (G,2) 6, (H,M)=(K,ZUM), where for every aeZUM

G(x), aeZ—M
K(a) = H(a), aeEM—-17
G'(@WUH'(a), aeZnM

Assume that (S, TuZ)n.(K,ZUM)=(W,(TUZ)N(ZUM)),
where for every ae(TUZ)U(ZUM);

K(a), ae(TUZ)—(TUM)

L(a) = S(a), ae(TUM)—(TUZ)

K@) NnS(a), ae(TuM)—(TU?Z)

Thus,
F(a), as(T-M)-(ZUM)
H(a), ae(M-T)-(ZUM)
F'(a) N H' (), as(TNM)-(ZUM)
G(), as(Z-M)-(TUM)
H(a), a€(M-Z)-TUM)=0
G'(0) nH (a), as(ZNM)-(TUM)
F(a) N G(w), as(T-M)N(Z-M)
L(a) ={ F(a) nH(w), ae(T-M)NM-Z)=0
F(o) N [G'(0) NH' ()], ae(T-M)NZNM)=0
H(a) N G(), ae(M-T)N(Z-M)=0
H(a) N H(w), ae(M-T)N(M-Z)
H(o) N [G’'(o) N H' ()] as(M-T)N(ZNM)
H(o) N [G’'(0) NH' ()], ae(TNM)N(Z-M)=0
[F'(0) N H'(a)] N H(), as(TNM)N(M-Z)
[FF(@) nH ()] N [G'(a) N H' ()], aeTNZNM
Hence,
F(a), aeTNZ NM
G(a), aeT'NZNnM
H(a), aeT'NZnNM
L(a)=1 F(a) N G(a), aeTNZNM
@, aeT’"NZnM
@, aeTNZnNM
[F'(a) N G’(a) N H' (), aeTNZNM
Therefore, N=L under the condition

T'NZNM=TNZ’NM=TNZNM’=@. It is obvious that the
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condition T'NZNM=TNZ'NM=0 is equivalent to the condition
(TAZ)NM=0Q.

2)[(F.T) U(G,Z)] 8.(HM)=[(F,T) 0.(HM)IN[(G.Z) 6, (HM
)]

Corollary 2. (Sg(U),u.,0,) is an additive idempotent
commutative semiring without zero, but with unity under
certain conditions.

Proof. Ali et al. (2011) showed that (Sg(U),U,) is a
commutative, idempotent monoid with identity @, , that is, a
bounded semilattice (hence a semigroup). (Sg(U), 6,) is a
commutative monoid (hence a semigroup) whose identity is @y
under the condition TNZNM=@, where (F,T), (G,Z) and (H,M)
are soft sets over U. Moreover, by Theorem 9 (i) (1), 6,
distributes over U, from LHS under Tn (ZAM)=TN Z NM=0,
and, 0, distributes over U, form RHS under the condition
(TAZ)NM=TNZNM=@. Consequently, under the conditions
TNZNM=(TAZ)NM=TN(ZAM)=0, (Sg(U), U, ,8,) is an
additive idempotent commutative semiring without zero, but
with unity under certain conditions.

Corollary 3. (Sg(U),n.,0,) is an additive idempotent
commutative semiring without zero, but with unity under
certain conditions.

Proof. Ali et al. (2011) showed that (Sg(U),n,) is a
commutative, idempotent monoid with identity @, , that is, a
bounded semilattice (hence a semigroup). (Sg(U), 6,) is a
commutative monoid (hence a semigroup) whose identity is @y
under the condition TNZNM=@, where (F,T), (G,Z) and (H,M)
are soft sets over U. Moreover, 6, distributes over N, from
LHS under Tn (ZAM)=Tn Z NnM=0, and 6, distributes over N,
from RHS under the condition (TAZ)NM=TNZNM=0Q.
Consequently, under the condition
TNZNM=(TAZ)NM=TN(ZAM)=0. (Sg(U),N,,8,) is an
additive idempotent commutative semiring without zero, but
with unity under certain conditions.

Theorem 10. Let (F,T), (G,2), and (H,M) be soft sets over U.
Then, extended theta operation distributes over soft binary
piecewise operations as follows:

i) LHS Distributions

The  following
TNZNM=TN(ZAM)=0.

1)(F.T) 6.[(G.Z) , (HL.M)]=[(F.T)8(G,Z)] ,[(F.T) 8, (H.M)].
Proof. First, consider the LHS. Let (G,Z); (HM)=(R,2),
where for every aeZ;

equations  are  satisfied if

_ G(),
R = {4 i@,

(F,T) 8.(R,2) =(N,TuZ), where for every aeTUZ,

ae€Z—M
a€ZNM

F(a), aeT—-1Z
N(a) = R(a), aeZ—T
F(@)NR(ax), aeTNZ



Thus,

F(o), aeT—-27Z
G(), ae(Z-M-T
N(a)=< G(a) N H(a), ae(ZnM)
F(a) N G'(a), aeTn(Z-M)
F() n [G'(a) UH (a)], aeTN(ZNM)
Now consider the RHS, e [(F,T)0.(G,2)]

;[(F,T) 0. (HM)]. Let (F,T)6.(G,2)=(K,Tuz), where for
every aeTUZ,;

F(o), aeT—-7Z
K(a) = G(a), aeZ—-T
F(@)NR(a), aeTNZ

Let (F,T) 6.(H,M)=(S,TUM), where for every aeTUM;

F(a), aeT—M
S(a) = H(o), aeM—-T
F(@nH (@), aeTnM

Let (K,TuZ) (S, TUM)=(L,(TUZ)U(TUM)), where for
every ae(TUZ)U(TUM);

_ K(a), ae(TUZ)—(TUM)
L = {K(a) NS, ae(TUZ)n(TUM)
Thus,
F(a), ae(T—2Z)— (TuM)=0
G(), ae(Z—T)—(TUM)
F(a) N G’(), ae(TNZ) — (TUM)=0
F(o) N F(o), ae(T—2)n(T=M)
F(a) N H(a), ae(T-2)NnM—-T)=0
L) FON [F@NH@]  ae(T-2)n(TnM)
(@=1 6o N F(a), ae(Z—-T)n (T —M)=@
G(ax) N H(w), ac(Z-T)NM-T)
G(o) N [F () NH'(a)], ae(Z—T)n(TNM)=0
[F'(0) N G’ ()] N F(a) ae(TNZ)n(T—M)
[F()nG(@]NH(@ ae(TNnZ)nM—T)=0
[F()nG@]n[F(e) nH ()], aeTNZNM
Thus,
(G(e), aeTNZNM
F(a), aeTNZ NM
o, aeT'NZnM
L@=1 6(w) n H(w), aeTNZNM
2, aeTNZnM'
\ F'(0) n [G'(c0) N H'(al, «eTNZAM

When considering T-Z in the function N, since T-Z=TNZ’,
if an element is in the complement of Z, it is either in M-Z, or
(MuZzZy. Thus, if a€T-Z, then either a€ TNMNZ’ or «a€
TNM’NZ>.Therefore, N=L under the condition
TNZNM=TNZ’NM=TNZNM’=@. It is obvious that the
condition T’NZNM=TNZ'"M=@ is equivalent to the
condition (TAZ)NM=0@.

MATHEMATICS, COMPUTER SCIENCE AND MECHANI%%

2)(F.T) 8, [(G.Z) |, HM)=[(F.T)8:(G.Z)] |, [(F.M) 8 (G.2)].
ii) RHS Distributions

The  following satisfied if

(TAZ)NM=TNZNM =0.
DIF.T),, (G.2)] 8 (HM)=[(F,T)0:(HM)] |, [(G.Z) 6(H,M)]

equations  are

Proof. First, consider the LHS of the equality. Let (F,T);
(G,2)=(R,T), where for every a€eT;

_ F(w), aeT—-1Z
R(@) = {F(a) UG(a), aeTNZ

Let (R,T) 8¢ (H,M) =(N,TUM), where for every aeTUM,;

R(a), aeT—M

N(a) = H(a), aeM-T

R()NH(x), aeTNM

Thus,

(F(a), ae(T—-2)—M
| F(a) U G(a) ae(TNZ)—M
N(e)=1{ H(), aeM-T
| F'(a) nH'(a), ae(T-2)NnM
[F'(a) N G’'(a)] N H'(), aeTnN(ZnNM)

Now consider the RHS. Let (F,T) 6.(H,M)=(K,TUM),
where for every aeTUM,;

F(a), aeT—M
K(a) = H(a), aeM—-T
F(o)nH'(a), aeTNM

Let (G,Z) 6, (H,M)=(S,TUM), where for every aeZUM,;

G(a), aeZ—-M
S(a) = H(a), aeM—-7Z
G NH(w), aeZnM

Let (K,TUM) _, (S.ZUM)=(L(TUM)U(ZUM)), where for
every ae(TUM)U(ZUM);

Lia) = K(a), ae(TUuM)—(ZUM)
@ = {K(a) US(w), ae(TUM)N(ZUM)
F(a), a e (T—M)— (ZUM)

H(a), ae(M—T)—(ZUM)=0
F’(a) N H'(), ae(TnZ)— (ZUM)=¢
F(a) U G(a), ae(T—-M)N(Z-M)
F(a) U H(a), ae(T—M)nM—2Z)-9

F(o) U [G'() NH'()], a € (T—M)N(ZNM)=0
H(a) U G(), aeM—T)N(Z-My=0
H(a) U H(w), aeM-T)Nn(M—-172)
H@ U [GC()NnH(a)], aeM-T)N((ZNM)
[F’() nH'(@)]U G(a), a € (TnM)n(Z-M)=0
[FF(o) nH' (@] UH(a0), «ae(TNZ)nM-Z)=0
[F()nH(@]U[GC(@)nH(a)], aeTNZNM

L(a)=+




Hence,
F(a), aeTnNZ' NnM'
[F(a) U G(a), aeTNZNM
H(a), ™nZ'nM
L@={ 1 e
H(a) U G'(), aeT'NZNM
F'(a«) UH(), aeTnNZ NnM
[F'() UG ()] N H' (), aeTNZNM

When considering M-T in the function N, since M-
T=MNT’, if an element is in the complement of T, then it is
either in Z-T or (ZUT)’. Thus if ad€M-T, then a€ MNZNT’ or
aeEMNZ’NT’. Thus, N=L under T’NZNM= TNZ’M =
TNZNM =@.

2) [(F.D), (G,2)] 8 (HM) =[(F,T)6.(H.M)] , [(G.Z) 6, (HM
)]

Corollary 4. (Sg(U),,.6)
multiplicative commutative semiring without zero, but with
unity under certain conditions.

Proof. Yavuz (2024) showed that (Sg(V), G) is an idempotent,
non-commutative semigroup (that is a band) under the condition
TNZ’NM =@, where (F,T), (G,Z2) and (H,M) are soft sets.
(Sg(U), B6,) is a commutative monoid (hence a semigroup)
whose identity is @, under the condition TNZNM=@, where
(F,T), (G,2) and (H,M) are soft sets over U. Moreover, 0,

distributes over G from LHS under TNZNM=TN(ZAM)=0, and

is an additive idempotent

0, distributes over G from RHS under the condition
(TAZ)NM=TNZNM =@. Consequently, under the conditions
TNZNM=TN(ZAM)=(TAZ)NM=TNZ’NM=0, (SE(U),G,GS) is
an additive idempotent multiplicative commutative semiring
without zero, but with unity under certain conditions.
Corollary 5. (SE(U),;,GE)
multiplicative commutative semiring without zero, but with
unity under certain conditions.

Proof. Yavuz (2024) showed that (Sg(U), ;) is an idempotent,
commutative semigroup (that is a band) under the condition
TNZ’NM =@, where (F,T), (G,Z2) and (H,M) are soft sets.
(Sg(U), 6,) is a commutative monoid (hence a semigroup)
whose identity is @5 under the condition TNZNM=@, where
(F,T), (G,2) and (H,M) are soft sets over U. Moreover, 0,

distributes over ; from LHS under TNZNM=TN(ZAM)=0 and

is an additive idempotent

0, distributes over ~ from RHS under the condition

n

(TAZ)NM=TNZNM=@. Consequently, under the conditions
TNZNM=TN(ZAM)=(TAZ)NM=TNZ’NM=0, (Sg(U), ;,es) is
an additive idempotent multiplicative commutative semiring
without zero, but with unity under certain conditions.
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CONCLUSION

Parametric techniques like soft sets and soft operations are
very useful when dealing with uncertainty. Introducing new soft
operations and figuring out their algebraic properties and uses
opens up new ways to solve problems with parametric data. This
work introduces a novel restricted and extended soft set
operation in this manner. By putting out the idea of "restricted
and extended theta operations of soft sets" and by carefully
examining the algebraic structures associated with these and
other specific kinds of soft set operations, we hope to make a
meaningful contribution to the field of soft set theory.
Specifically, an extensive analysis is conducted on the algebraic
characteristics of these new soft set operations. Taking into
account the algebraic properties of these soft set operations and
distribution laws, a thorough study of the algebraic structures
formed by these operations in the collection of soft sets over the
universe is presented. We demonstrate that, under some
assumptions, (Sg(U),0,) is a commutative monoid with identity
@p. Furthermore, we demonstrate how several significant
algebraic structures, including semirings, are formed in the
collection of soft sets over the universe combined with extended
theta operations and other kinds of soft set operations:
(Sg(U),U,0,), (Sg(U),n,0,) are all additive idempotent
commutative semirings without zero but with unity under
certain conditions.(SE(U),;, 0,), (SE(U),G, 0.) are all additive
idempotent multiplicative commutative semirings without zero
but with unity under certain conditions.

By examining novel soft set operations and the algebraic
structures of soft sets, we can fully comprehend their
application. This can advance soft set theory and the classic
algebraic literature in addition to offering new examples of
algebraic structures. Future research might look at other
varieties of new restricted and extended soft set operations, as
well as the matching distributions and characteristics, to add to
this body of knowledge.
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