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ABSTRACT 

Since its introduction by Molodtsov in 1999, soft set theory has gained widespread recognition as a method for 

addressing uncertainty-related issues and modeling uncertainty. It has been used to solve several theoretical and 

practical issues. Since its introduction, the central idea of the theory-soft set operations-has captured the attention 

of scholars. Numerous limited and expanded businesses have been identified, and their attributes have been 

scrutinized thus far. We present a detailed analysis of the fundamental algebraic properties of our proposed 

restricted theta and extended theta operations, which are unique restricted and extended soft set operations. We 

also investigate these operations’ distributions over various kinds of soft set operations. We demonstrate that, when 

coupled with other types of soft set operations, the extended theta operation forms numerous significant algebraic 

structures, such as semirings in the collection of soft sets over the universe, by taking into account the algebraic 

properties of the extended theta operation and its distribution rules. This theoretical subject is very important from 

both a theoretical and practical perspective since soft sets' operations form the foundation for numerous 

applications, including cryptology and decision-making procedures. 

Keywords: Soft sets, Soft set operations, Restricted theta operation, Extended theta operation. 

INTRODUCTION 

The real world is filled with a lot of uncertainty. 

Conventional mathematical reasoning is unable to tackle these 

issues. More scientific investigation that goes beyond the 

capability of currently accessible methodologies has been 

necessary to dispel these uncertainties. In this sense, Pascal and 

Fermat created the theory of probability in the early 17th 

century when they conducted an analytical study of the 

uncertainty problem. In the early 1800s, a large number of 

scientists investigated uncertainty. 

Many values were discovered as a result of Heisenberg's 

1920 explanation, which was the first to explain uncertainty. 

Early in the 1930s, Lukaisewicz developed the first three-valued 

logic system. A few theories that may be used to describe 

uncertainty include probability theory, interval mathematics, 

and fuzzy set theory; however, each of these theories has 

drawbacks of its own. Thus, the concept of “Soft Set” was first 

proposed by Molodtsov (1999) and has nothing to do with how 

the membership function evolved. While soft set theory utilizes 

a set-valued function instead of a real-valued one, fuzzy set 

theory aims to eliminate ambiguity. This idea has been 

successfully applied in several mathematical fields since its 

conception, such as Riemann integration, Perron integration 

analysis, game theory, probability theory, and measurement 

theory. 

                                                           
*Corresponding author: aslihan.sezgin@amasya.edu.tr 

Soft set operations were first studied by Maji et al. (2003) 

and Pei and Miao (2005). Ali et al. introduced a number of soft 

set operations (2009), including restricted and extended soft set 

operations. In their work on soft sets, Sezgin & Atagün (2011) 

established and gave the characteristics of the restricted 

symmetric difference of soft sets. They also explored the 

principles of soft set operations and gave illustrations of how 

they relate to one another. A thorough examination of the 

algebraic structures of soft sets was carried out by Ali et al. 

(2011). A number of academics were interested in soft set 

operations and conducted extensive studies on the subject in 

(Yang, 2008; Neog & Sut, 2011; Fu, 2011; Ge & Yang, 2011; 

Singh & Onyeozili, 2012a; Singh & Onyeozili, 2012b; Singh & 

Onyeozili, 2012c; Singh & Onyeozili, 2012d; Husain et al., 

2018). 

In recent years, a wide variety of novel soft set operations 

have been implemented. The idea and characteristics of the soft 

binary piecewise difference operation in soft sets were initially 

presented and examined by Eren & Çalışıcı (2019). Sezgin et al. 

(2019) introduced the extended difference of soft sets, while 

Stojanovic (2021) characterized the extended symmetric 

difference along with its properties. Furthermore, a 

comprehensive examination of restricted and extended 

symmetric difference operations was carried out by Sezgin & 

Çağman (2024). Sezgin et al. (2023c) worked on numerous new 

binary set operations and defined several more, inspired by the 

work of Çağman (2021), who introduced two new complement 
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operations to the literature. Using this method, Aybek (2024) 

proposed several new restricted and extended soft set 

operations. Three authors, Akbulut (2024), Demirci (2024), and 

Sarıalioğlu (2024), focused on complementary extended soft 

sets operations in their attempts to alter the structure of extended 

operations in soft sets. Other types of soft set operations, 

complementary soft binary piecewise operations, were further 

investigated by (Sezgin & Aybek, 2023; Sezgin & Akbulut, 

2023; Sezgin & Dagtoros, 2023; Sezgin & Demirci, 2023; 

Sezgin & Sarıalioğlu, 2024; Sezgin & Yavuz, 2023a; Sezgin et 

al., 2023a; Sezgin & Atagün, 2023; Sezgin & Çağman, 2024). 

In addition, Sezgin & Çalışıcı (2024) carried out a 

comprehensive analysis of the soft binary piecewise difference 

operation, while Sezgin & Yavuz (2023) and Yavuz (2024) 

investigated other soft binary piecewise operations. 

Classifying algebraic structures and finding, representing, 

and drawing inferences from their common features are the 

goals of abstract algebra. The name of the abstract algebra used 

in this area of mathematics is due to this. Mathematicians have 

studied algebraic structures for millennia because they offer an 

abstract and universal foundation for learning and 

understanding mathematical topics. Many branches of 

mathematics depend on algebraic structures. There are several 

significant applications of algebraic structures, such as rings, 

groups, and fields, in mathematics as well as other disciplines 

like computer science and physics. The foundation for 

comprehending increasingly difficult mathematical ideas is laid 

by the frameworks of algebraic geometry (the study of 

multivariable polynomial solutions), algebraic topology, 

modular arithmetic, physics, number theory, and computer 

graphics, among other extremely significant subjects. 

Moreover, a foundation for comprehending and researching a 

broad variety of mathematical objects and their relationships is 

provided by mathematical structures. 

Groups have applications in physics, chemistry, and 

cryptography and are used to study symmetries, rotations, and 

transformations in mathematical contexts. Studying the 

symmetries of fascinating geometric objects and forms requires 

an understanding of fundamental groups and their 

representations as group transformations, which are 

fundamental algebraic structures. Abstract algebra, coding 

theory, and number theory all make use of rings. Geometry and 

other mathematical topics require a solid understanding of field 

algebra. Engineering, quantum physics, and linear algebra all 

employ vector spaces. Algebra is used in computer science, 

physics, and mathematical reasoning. Both representation 

theory and abstract algebra make use of modules. Moreover, 

abstract algebra, which examines the shared structures and 

common features of many algebraic systems, is centered on the 

study of algebraic structures. By knowing these systems' 

features, mathematicians may create new theories, solve 

challenging problems, and apply ideas to a variety of 

mathematical, scientific, and technical fields. Additionally, 

special cases of algebraic structures are frequently provided in 

applications, which make it easier to look at more general cases 

and help make sense of specific ones.  

Near-rings, semirings, and semifields are a few of the most 

well-known binary algebraic structures, which are the 

generalizations of rings. For a very long time, academics have 

been keen to understand more about this subject. Ever since 

Vandiver (1935) introduced the concept of semirings, a number 

of researchers have studied it. Semirings are very important in 

mathematics and have many applications, according to 

Vandiver (1935). In addition to its significance in geometry, 

semirings have several applications in the information sciences 

and practical mathematics (Vandiver, 1935).  Semirings are 

important in pure mathematics and geometry, and they are 

useful in many other fields as well (Ghosh, 1996; Wechsler, 

1978; Golan, 1999; Hebisch & Weinert, 1998; Mordeson & 

Malik, 2002; Kolokoltsov & Maslov, 1997; Hopcroft & Ullman, 

1979; Beasley & Pullman, 1988; Beasley & Pullman, 1992). 

The categorization of algebraic structures according to the 

properties of the operation is one of the most important 

problems in algebraic mathematics. We may suggest new 

operations on soft sets, examine their properties, and take into 

account the algebraic structures they form in the collection of 

soft sets in order to further our grasp of this subject. Thus far, 

four extended soft set operations (extended intersection, union, 

difference, and symmetric difference for soft sets) and four 

limited soft set operations (restricted intersection, union, 

difference, and symmetric difference) have been presented. 

Our goal is to make a significant contribution to the field 

of soft set theory by proposing a new restricted and extended 

soft set operation for soft set theory, which we call "restricted 

theta operation and extended theta operation of soft sets" and 

closely examining the algebraic structures associated with them 

and other soft set operations in the collection of soft sets. With 

the introduction of the so-called new operations in soft sets, an 

understanding of the underlying algebraic structures is crucial. 

This study is organized as follows: Section 2 serves as a 

reminder of the basic ideas behind soft sets and other algebraic 

structures. In Section 3, the new soft set operations are defined. 

A detailed analysis is conducted on the algebraic characteristics 

of the theta operation and extended theta operation. 

Furthermore, we study how these novel soft set operations 

distribute over the existing soft set operations. Considering the 

distribution laws and the algebraic characteristics of the soft set 

operations, an extensive analysis of the algebraic structures 

formed in the set of soft sets over the universe using these 

operations is presented. Our demonstration reveals that the 

collection of soft sets throughout the universe forms several 

significant algebraic structures, including semirings. A 

comprehensive analysis expands on our knowledge of the 

applications and consequences of soft set theory across several 
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fields. In the conclusion section, we discuss the significance of 

the study's findings and their potential applications. 

PRELIMINARIES 

This section covers several algebraic structures as well as 

some basic ideas in soft set theory.  

Definition 1. (Molodtsov, 1999) Let U be the universal set, E 

be the parameter set, P(U) be the power set of U, and T⊆ E. A 

pair (F, T) is called a soft set on U. Here, F is a function given 

by F ∶ T → P(U). 

Throughout this paper, the collection of all the soft sets 

over U (no matter what the parameter set is) is designated by 

SE(U) and ST(U) denotes the collection of all soft sets over U 

with a fixed parameter set T, where T is a subset of E. 

Definition 2. (Ali et al., 2011) Let (F,T) be a soft set over U. If 

(x)=∅ for every x∈T, then the soft set (F,T) is called a null soft 

set with respect to K, denoted by ∅K. Similarly, let (F,E) be a 

soft set over U. If F(x)=∅ for every x∈E,  then the soft set (F,E) 

is called a null soft set with respect to E, denoted by ∅E (Ali et 

al., 2009). A soft set with an empty parameter set is denoted as 

∅∅. It is obvious that ∅∅ is the only soft set with an empty 

parameter set. 

Definition 3. (Ali et al., 2009) Let (F,T) be a soft set over U. If 

F(x)=U for every x∈T, then the soft set (F,T) is called a relative 

whole soft set with respect to T, denoted by UT. Similarly, let 

(F,E) be a soft set over U. If F(x)=U for every x∈E, then the soft 

set (F,E) is called an absolute soft set, and denoted by UE. 

Definition 4. (Pei & Miao; 2005) Let (F,T) and (G,Y) be soft 

sets over U. If T⊆Y and F(x) ⊆G(x) for every x∈T, then (F,T) 

is said to be a soft subset of (G,Y), denoted by (F,T)⊆̃(G,Y). If 

(G,Y) is a soft subset of (F,T), then (F,T) is said to be a soft 

superset of (G,Y), denoted by (F,T)⊇̃(G,Y). If (F,T)⊆̃(G,Y) and 

(G,Y)⊆̃(F,T), then (F,T) and (G,Y) are called soft equal sets. 

Definition 5. (Ali et al., 2009) Let (F,T) be a soft set over U. 

The relative complement of (F,T), denoted by (F,T)r =(Fr,T), is 

defined as follows: Fr(x)=U-F(x), for every x∈T. 

Çağman (2021), introduced two new complements as the 

inclusive complement and the exclusive complement, which we 

denote as + and θ, respectively. For two sets X and Y, these 

binary operations are defined as X+Y=X’∪Y and XθY=X’∩Y’. 

Sezgin et al. (2023c) investigated the relationship between these 

two operations and also introduced three new binary operations: 

For two sets X and Y, these new operations are defined as 

X*Y=X’∪Y’, X𝛾Y= X’∩Y, X𝝺Y=X∪Y’ (Sezgin et al., 2023c). 

Let "⋈" be used to represent the set operations (i.e., here, ⋈ can 

be ∩, ∪,\, ∆, +,θ, *, λ,γ). Then, all types of soft set operations 

are defined as follows:  

Definition 6. (Ali et al., 2009; Sezgin & Atagün, 2011; Ali et 

al., 2011;  Aybek, 2024) Let (F,T) and (G,Y) be two soft sets 

over U. The restricted ⋈ operation of (F,T) and (G,Y) is the soft 

set (H, Z), denoted by (F,T) ⋈R (G,Y)= (H,Z), where Z = T ∩ 

Y≠ ∅ and for every x∈ Z, H(x) = F(x) ⋈G(x). Here, if  Z= T ∩ 

Y = ∅, then (F, T) ⋈R(G, Y)= ∅∅. 

Definition 7.  (Maji et al., 2003; Ali et al., 2009; Sezgin et al., 

2019; Stojanavic, 2021; Aybek, 2024) Let (F, T) and (G, Y) be 

two soft sets over U. The extended ⋈ operation (F, T) and (G,Y) 

is the soft set (H,Z), denoted by (F, T) ⋈ε(G, Y) = (H, Z), where 

Z= T ∪ Y, and for every x∈ Z, 

H(x) = {

F(x), x ∈ T − Y

G(x), x ∈ Y − T

F(x) ⋈ G(x), x ∈ T ∩ Y

 

Definition 8. (Demirci, 2024; Sarıalioğlu, 2024; Akbulut, 2024) 

Let (F,T) and (G, Y) be two soft sets over U. The 

complementary extended  ⋈ε operation (F,T) and (G,Y) is the 

soft set (H,Z), denoted by (F, T)
＊

 ⋈ε
(G, Y) = (H, Z), where Z = 

T ∪ Y, and for every x∈ Z, 

H(x) = {

F′(x), x ∈ T − Y

G′(x), x ∈ Y − T

F(x) ⋈ G(x), x ∈ T ∩ Y

 

Definition 9. (Çalışıcı & Eren, 2019; Sezgin & Yavuz, 2023b; 

Sezgin & Çalışıcı, 2024, Yavuz, 2024) Let (F,T) and (G,Y) be 

two soft sets on U. The soft binary piecewise ⋈ operation of 

(F,T) and (G,Y) is the soft set (H,T), denoted by 

(F, T)
~
⋈(G, Y) = (H, T), where for every x∈ T, 

H(x) = {
F(x), x ∈ T − Y

F(x) ⋈ G(x), x ∈ T ∩ Y
 

Definition 10. (Sezgin & Demirci, 2023; Sezgin & Aybek, 

2023; Sezgin et al. 2023a, 2023b; Sezgin & Atagün, 2023; 

Sezgin & Yavuz, 2023a; Sezgin & Dagtoros, 2023; Sezgin & 

Çağman, 2024; Sezgin & Sarıalioğlu, 2024; Sezgin & 

Sarıalioğlu, 2024) Let (F,T) and (G,Y) be two soft sets on U. 

The complementary soft binary piecewise ⋈ operation of (F,T) 

and (G,Y) is the soft set (H,T), denoted by (F, T)
＊

~
⋈
(G, Y) =

(H, T), where for every x∈ T, 

H(x) = {
F′(x), x ∈ T − Y

F(x) ⋈ G(x), x ∈ T ∩ Y
 

For more about soft sets, we refer to (Mahmood et al. 

2018; Jana et al., 2019; Muştuoğlu et al., 2016; Sezer et al., 

2015b; Sezer, 2014; Sezgin, 2016; Atagün & Sezgin, 2018; 

Sezgin, 2018; Sezgin et al, 2017; Sezgin et al., 2022; Lawrence 

& Manoharan, 2023; Jabir et al. 2024). 

Definition 11. (Clifford, 1954) Let (S, ⋆) be an algebraic 

structure. An element s ∈S is called idempotent if s2=s. If s2=s 

for every s∈S, then the algebraic structure (S,⋆) is said to be 

idempotent. An idempotent semigroup is called a band, an 

idempotent and commutative semigroup is called a semilattice, 

and an idempotent and commutative monoid is called a bounded 
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semilattice. 

In a monoid, although the identity element is unique, a 

semigroup/groupoid can have one or more left identities; 

however, if it has more than one left identity, it does not have a 

right identity element, thus it does not have an identity element. 

Similarly, a semigroup/groupoid can have one or more right 

identities; however, if it has more than one right identity, it does 

not have a left identity element, thus it does not have an identity 

element (Kilp et al., 2001). 

Similarly, in a group, although each element has a unique 

inverse, in a monoid, an element can have one or more left 

inverses; however, if an element has more than one left inverse, 

it does not have a right inverse, thus it does not have an inverse. 

Similarly, in a monoid, an element can have one or more right 

inverses; however, if an element has more than one right 

inverse, it does not have a left inverse, thus it does not have an 

inverse (Kilp et al., 2001). 

Definition 12. Let S be a non-empty set, and let "+" and "⋆" be 

two binary operations defined on S. If the algebraic structure (S, 

+, ⋆)  satisfies the following properties, then it is called a 

semiring:  

i. (S, +) is a semigroup. 

ii. (S, ⋆) is a semigroup, 

iii. For every x, y, z ∈S, x⋆(y + z) = x⋆y + x⋆z and (x +y) 

⋆z = x⋆z + y⋆z. 

If for every x,y∈S, x+y=y+z, then S is called an additive 

commutative semiring. If for every x,y∈S, x⋆y=y⋆x, then S is 

called a multiplicative commutative semiring. If there exists an 

element 1∈S such that x⋆1=1⋆x=x for every x∈S (multiplicative 

identity), then S is called semiring with unity. If there exists 0∈S 

such that for every x∈S, 0⋆x=x⋆0=0 and 0+x=x+0=x, then 0 is 

called the zero of S. A semiring with commutative addition and 

a zero element is called a hemiring (Vandiver, 1934). We refer 

to Pant et al. (2024) for the possible implications of network 

analysis and graph applications with regard to soft sets, which 

are defined by the divisibility of determinants. 

RESTRICTED AND EXTENDED THETA OPERATION 

The new restricted theta and extended theta operations for 

soft sets are presented in this section. By examining the 

distributive laws across various types of soft sets, it also talks 

about their algebraic features and connections with other soft set 

activities. Examining these operations' algebraic structures in 

the SE(U) set in conjunction with other specific kinds of soft set 

operations yields some significant findings. 

Restricted Theta Operation and Its Properties 

Definition 13. Let (F, T) and (G, Z) be soft sets over U. The 

restricted theta of (F, T) and (G, Z), denoted by (F, T)θR(G, Z),  

is defined as (F, T)θR(G, Z) = (H, C), where C=T∩Z, and if 

C=T∩Z≠∅, then for every ⍺∊C,  

H(⍺)= F(⍺)θG(⍺)=F’(⍺)∩G’(⍺); 

if C= T∩Z=∅, then (F,T) θR (G,Z)=(H, C)= ∅∅. 

Since the only soft set with empty parameter set is ∅∅, if 

C=T∩Z= ∅, then it is obvious that (F,T) θR (G,Z)= ∅∅. Thus, 

in order to define the restricted theta operation of (F, T) and 

(G, Z), there is no condition that T∩Z≠ ∅. 

Example 1. Let E={e1,e2,e3,e4}be the parameter set, 

T={e1,e3} and Z={e2,e3,e4} be subsets of E, 

U={h1,h2, h3,h4, h5} be the universal set, (F,T) and (G,Z) be the 

soft sets over U as (F,T)={(e1,,{h2,h5), (e3,{h1,h2,h5})}, 

(G,Z)={( e2,{h1,h4,h5}),{(e3,{h2,h3,h4}),(e4, h3,h5})}. 

Here let (F,T)θR(G,Z)=(H,T∩ Z), where for every ⍺ ∊ T ∩

Z={e3}.Thus,H(e3)=F’(e3) ∩G’(e3)={h3,h4}∩{h1, h5}={

h1, h3, h4, h5}. Hence, (F,T)θR(G,Z)={(e3, ∅)} 

Theorem 1. Let (F,T), (G,Z), (H,M), (G,T), (H,T), (K,V) and 

(L, V) be soft sets over U. Then, we have the followings: 

1) The set SE(U) is closed under θR. 

2)  [(F,T) θR(G,Z)] θR(H,M) ≠ (F,T) θR[(G,Z) θR(H,M)]. 

3) [(F,T) θR(G,T)] θR(H,T)≠(F,T) θR[(G,T) θR(H,T)]. 

4) (F,T) θR (G,Z)=(G,Z) θR(F,T). 

5) (F,T) θR(F,T)= (F, T)r. 

6) (F,T) θR∅T=∅TθR(F,T)=(F, T)r.             

7) (F,T) θR ∅M=∅MθR (F,T)=(F, T ∩ M)r.    

8) (F,T)θR ∅E=∅E θR (F,T)= (F, T)r.          

9) (F,T)θR∅∅=∅∅θR(F,T)= ∅∅.  

10) (F,T)θRUT= UTθR(F,T)= ∅T. 

11)  (F,T)θRUM=UM θR(F,T)= ∅T∩M. 

12) (F,T)θRUE=UEθR(F,T)= ∅T. 

13) (F,T) θR (F,T)r=(F,T)r θR(F,T)= ∅T. 

14) [(F,T) θR(G,Z)]r=(F,T) ∪R (G,Z). 

15) (F,T)θR(G, T)= UT if and only if (F, T) = ∅T and (G, T) =

∅T. 

16)  ∅T∩Z ⊆̃(F,T) θR(G,Z) and  (F,T) θR(G,Z) ⊆̃ UT and (F,T) 

θR(G,Z) ⊆̃ UZ.    

17) (F,T)θR(G,Z) ⊆̃ (F,T)r and (F,T)θR(G,Z) ⊆̃(G,Z)r. 

18) If (F,T) ⊆̃ (G, Z), (F,T) θR(G,Z) =(G,T)r. 

19) If (F,T) ⊆̃ (G, T), then (G,T) θR(H,Z) ⊆̃(F,T) θR(H,Z) and 

(H,Z) θR (G,T) ⊆̃(H,Z) θR(G,T). 

20) If (G,T) θR(H,Z) ⊆̃(F,T)θR(H,Z), then (F,T) ⊆̃ (G, T) needs 

not be true. That is, the converse of Theorem 1 (19) is not ture.  

21) If (F,T) ⊆̃ (G, T) and (K,V) ⊆̃ (L, V), (G,T) θR(L,V) ⊆̃(F,T) 

θR (K,V). Similarly, (L,V) θR(G,T) ⊆̃(K,V) θR (F,T). 

22) (F,T) θR (G,Z) ⊆̃(F,T) ∗R (G,Z) and (G,Z) θR (F,T) ⊆̃(G,Z) 

∗R (F,T). 

Proof. 1) It is clear that θR is a binary operation in SE(U). That 

is, 

θR: SE(U)x SE(U)→ SE(U) 
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((F,T), (G,Z)) → (F, T)θR(G, Z) =(H,T∩ Z) 

Similarly, 

θR: ST(U)x ST(U)→ ST(U) 

                 ((F,T), (G,T)) → (F, T)θR(G, T) =(H,T∩ T)=(H,T) 

That is, let T be a fixed subset of the set E and (F,T) and 

(G,T) be elements of ST(U), then so is (F,T)θR (G,T). Namely, 

ST(U) is closed under θR either. 

2) Let (F,T)θR(G,Z)=(S,T∩Z), where for every ⍺∊T∩Z, 

T(⍺)=F’(⍺)∩G’(⍺). Let (S,T∩Z)θR(H,M)=(R,(T∩Z)∩M)), 

where for every ⍺∊(T∩Z)∩M, R(⍺)=T’(⍺)∩H’(⍺). Thus,  

R(⍺)=[F(⍺)∪G(⍺)]∩H’(⍺) 

Let (G,Z) θR(H,M)=(K,Z∩M), where for every ⍺∊Z∩M, 

K(⍺)=G’(⍺)∩H’(⍺). Let (F,T) θR(K, Z ∩M)=(S,T∩(Z∩M)), 

where for every ⍺∊T∩(Z∩M), S(⍺)=F’(⍺)∩K’(⍺). Thus,  

S(⍺)=F’(⍺)∩[G(⍺)∪H(⍺)] 

Thus, (R,(T ∩ Z) ∩ M) ≠(S, T∩(Z∩M)). That is, in SE(U), 

the operation θR is not associative. Here, it is obvious that if 

T∩Z= ∅ or Z∩M= ∅ or T∩M= ∅, then since both sides of the 

equality is ∅∅ , the operation θR is associative under these 

conditions. 

3) Let (F,T)θR(G,T)=(K,T), where for every ⍺∊T∩T=T, 

K(⍺)=F’(⍺)∩G’(⍺). Let (K,T)θR(H,T) =(R,T), where for every 

⍺∊T∩T=T, R(⍺)=K’(⍺)∩H’(⍺). Hence, 

R(⍺)=[F(⍺)∪G(⍺)]∩H’(⍺) 

Let (G,T) θR(H,T)=(L,T), where for every ⍺∊T∩T, 

L(⍺)=G’(⍺)∩H’(⍺). Let (F,T) θR(L,T)= (N,T), where for every 

⍺∊T∩T, N(⍺)= F’(⍺)∩L’(⍺). Hence, 

N(⍺)=F’(⍺) ∩ [G(⍺)∪H(⍺)] 

Thus, (R,T)≠(N,T). That is,  θR is not associative in the 

collection of soft sets with a fixed parameter set. 

4) Let (F,T) θR(G,Z)=(H,T∩Z), where for every ⍺∊T∩Z, 

H(⍺)=F’(⍺)∩G’(⍺). Let (G,Z) θR(F,T)=(S,Z∩T), where for 

every ⍺∊Z∩T, S(⍺)=G’(⍺)∩F’(⍺). Thus,  

(F,T) θR (G,Z)=(G,Z) θR(F,T). 

That is, θR is commutative in SE(U). Here it is obvious that 

if T∩Z= ∅ , then since both sides is ∅∅, θR is commutative in 

SE(U) under this condition. Moreover, it is evident that 

(F,T)θR(G,T)=(G,T) θR(F,T), namely, θR is commutative in the 

collection of soft sets with a fixed parameter set. 

5) Let (F,T) θR(F,T)=(H,T∩T). Thus, for every ⍺∊T, 

H(⍺)=F’(⍺)∩F’(⍺)=F’(⍺). Hence (H,T)=(F, T)r. That is, the 

operation θR is not idempotent in SE(U).  

6)  Let ∅T=(S,T), where for every ⍺∊T, S(⍺)= ∅. Let 

(F,T) θR(S,T)=(H,T∩T), where for every ⍺∊T, 

H(⍺)=F’(⍺)∩S’(⍺)=F’(⍺)∩U= F’(⍺). Thus, (H,T)= (F, T)r.       

7)  Let ∅M=(S,M), where for every ⍺∊M, S(⍺)=∅. Let (S,M) θR 

(F,T)=(H,M∩T), where for every ⍺∊T, 

H(⍺)=S(⍺)∩F’(⍺)=F’(⍺)∩U= F’(⍺). Thus, (H,T∩M)= (F, T ∩

M)r. 

8)  Let ∅E=(S,E), where for every ⍺∊E, S(⍺)=∅. S(⍺)=∅. Let 

(F,T)θR(S,E)=(H,T∩E) where for every ⍺∊T∩E=T, 

H(⍺)=F’(⍺)∩S’(⍺)=F’(⍺)∩U= F’(⍺).Thus, (H,T)=(F, T)r. 

9)  Let ∅∅=(S, ∅). Let (F, T) θR(S, ∅)=(H,T∩∅). Since the 

parameter set ∅∅ is the only soft set that is an empty set, (H, 

∅)=∅∅. That is, in the set SE(U), the absorbing element of the 

operation θR is the soft set ∅∅. 

10) Let  UT=(K,T), where for every ⍺∊T, K(⍺)=U. Let 

(F,T) θR(K, T)=(H,T∩T), where for every ⍺∊T, H(⍺)= 

F’(⍺)∩T’(⍺)=F’(⍺)∩ ∅=∅. Thus, (H,T)= ∅T. 

11) Let UM=(K,M), where for every ⍺∊M, K(⍺)=U. Let 

(F,T) θR(K,M)=(H,T∩M), where for every ⍺∊T∩M, 

H(⍺)=F’(⍺)∩T’(⍺)=F’(⍺)∩ ∅=∅. Thus, (H, T∩M)= ∅T∩M. 

12)  Let  UE=(K,E), where for every ⍺∊E, K(⍺)=U. Let 

(F,T) θR(K, E)=(H,T∩E), where for every ⍺∊T∩E=T, 

H(⍺)=F’(⍺)∩K’(⍺)=F’(⍺)∩ ∅=∅. Thus (H,T)= ∅T. 

13)  Let(F,T)r=(H,T), where for every ⍺∊T, H(⍺)=F’(⍺). Let 

(F,T)θR (H,T)=(L,T∩T), where for every ⍺∊T, 

L(⍺)=F’(⍺)∩H’(⍺)=F’(⍺)∩F(⍺)=∅. Thus, (L,T)= ∅T.
 

14) Let (F,T)θR(G,Z)=(H,T∩Z), for every ⍺∊T∩Z, 

H(⍺)=F’(⍺)∩G’(⍺). Let (H,T∩Z)r=(K,T∩Z) where for every 

⍺∊T∩Z, K(⍺)=F(⍺)∪G(⍺). Thus, (K,T∩Z)=(F,T) ∪R (G,Z). 

15)   Let  (F, T) θR(G, T) = (K,T∩T), where for every ⍺∊T, 

K(⍺)= F’(⍺)∩G’(⍺). Since (K,T)= UT, K(⍺)=U, for every ⍺∊T. 

Thus, K(⍺)=F’(⍺)∩G’(⍺)=U, for every ⍺∊T⇔F’(⍺)=U and 

G’(⍺)= U, for every ⍺∊T  ⇔ F(⍺)=∅ and G(⍺)=∅, for every 

⍺∊T⇔(F, T) = ∅T  and (G,T)= ∅T, for every ⍺∊T. 

16)   Obvious. 

17) Let (F,T)θR(G,Z)=(H,T∩Z), where for every ⍺∊T∩Z, 

H(⍺)=F’(⍺) ∩G’(⍺). Since, for every ⍺∊T∩Z, H(⍺)=F’(⍺) ∩

G′(⍺) ⊆F’(⍺). 

Thus, (F,T)θR(G,Z)⊆̃(F,T)r. Similarly, since F’(⍺) ∩

G′(⍺) ⊆G’(⍺), (F,T)θR(G,Z) ⊆̃ (G,Z)r. 

18)  Let (F,T) ⊆̃ (G, Z). Then, T⊆Z and for every ⍺∊T, F(⍺)⊆

G(⍺). Thus for all ⍺∊T, G’(⍺)⊆ F′(⍺). 

Let (F,T)θR(G,Z)=(K,T∩Z=T). Then, for every ⍺∊T, 

K(⍺)=F’(⍺)∩G’(⍺)=G′(⍺), hence (K,T)=(F,T) θR(G,Z)=(G,T)r. 

Conversely let (F,T)θR(G,Z) =(G,T)r. Hence, T∩Z=T, and so 

T⊆Z. Also, for every ⍺∊T, F’(⍺)∩G’(⍺)=G′(⍺), and so 

G’(⍺)⊆F’(⍺). Thus, for all ⍺∊T, F(⍺)⊆G(⍺), (F,T) ⊆̃ (G, Z). 

19)  Let (F,T) ⊆̃ (G, T). Thus for every ⍺∊T, F(⍺)⊆ G(⍺) 

and for every ⍺∊T, G’(⍺)⊆F’(⍺).  Let 

(G,T) θR(H,Z)=(K,T∩Z). Thus for every ⍺∊T∩Z, 

K(⍺)=G’(⍺)∩H’(⍺). Let (F,T)θR (H,Z)=(L,T∩Z). Hence 

for every ⍺∊T∩Z, L(⍺)=F’(⍺)∩H’(⍺). Thus, 

K(⍺)=G’(⍺)∩H’(⍺)⊆F’(⍺)∩H’(⍺)=L(⍺), for every 

⍺∊T∩Z, hence, (G,T) θR(H,Z) ⊆̃ (F,T) θR(H,Z). It is clear 
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from the commutative property that, under the same conditions, 

(H,Z) θR(G,T)⊆̃(H,Z)θR(G,T) will be achieved. 

20)  We give a counterexample to show that the converse of 

Theorem 1 (19) is not true. Let E={e1,e2,e3,e4, e5} be the 

parameter set, T={e1,e3}, K={e1, e3, e5},  and Z={e1,e3, e5, 

e6} be the subsets of E, U={h1,h2, h3,h4, h5} be the universal 

set, and (F,T), (G,T) and (H,Z) be the soft sets as follows: 

(F,T)={(e1,{h2, h5,}),(e3,{h1,h2,h5,})},(G,T)={(e1,,{h2}),(e3,

{h1,h2})},(H,Z)={(e1,,U),(e3,U),(e5,,{h1,h5,})}.  

Let (G,T) θR(H,Z)=(L,T∩ Z), where for every ⍺ ∊ T ∩

Z={e1, e3}, L(⍺)=G′(⍺) ∩H’(⍺), L(e1)=G’(e1)H'(e1)=∅, 

L(e3)=G’(e3) ∩H’(e3)= ∅. Thus, (G,T)θR(H,Z)={(e1, ∅), 

(e3, ∅)}. Now let (F,T)θR(H,Z)=(K,T∩Z), where for every ⍺ ∊

T ∩  Z={e1, e3}, K(⍺)=F’(⍺) ∩H’(⍺),K(e1)=F’(e1) ∩H’(e1)=∅,  

K(e3)=F’(e3) ∩H’(e3)= ∅. Thus, (F,T) θR(H,Z)={(e1, ∅), 

(e3, ∅)}. 

It is observed that (G,T) θR(H,Z) ⊆̃(F,T) θR(H,Z); 

however then (F,T) ⊆̃ (G, K) needs not be true. 

21)  Let (F,T) ⊆̃ (G, T) and (K,V) ⊆̃ (L, V). Thus, for every ⍺∊T 

and for every ⍺∊Z, F(⍺)⊆ G(⍺) and K(⍺)⊆ L(⍺). Hence, for 

every ⍺∊T, G’(⍺)⊆ F′(⍺) and for every ⍺∊Z, L’(⍺)⊆ K′(⍺). Let 

(G,T) θR (L,Z)=(M,T∩ Z). Thus, for every ⍺∊T∩ Z, 

M(⍺)=G’(⍺)∩L’(⍺). Let (F,T)θR (K,Z)=(N,T∩ Z). Thus, for 

every ⍺∊T∩ Z, N(⍺)=F’(⍺)∩K'(⍺). Since, for every ⍺∊T∩ Z, 

G’(⍺)⊆ F′(⍺) and L’(⍺)⊆ K′(⍺), M(⍺)=G’(⍺)∩L’(⍺)⊆ F′(⍺) ∩

K’(⍺) = N(⍺). Thus, (G,T) θR (L,V) ⊆̃(F,T) θR (K,V). 

22) Let (F,T)θR(G,Z)=(M,T∩ Z). Hence, for every ⍺∊T∩ Z, 

M(⍺)=F’(⍺)∩G’(⍺). Let (F,T)∗R(G,Z)=(N,T∩ Z). Thus, for 

every ⍺∊T∩ Z, N(⍺)=F’(⍺)∪G’(⍺). 

Since M(⍺)=F’(⍺)∩G’(⍺)⊆F’(⍺)∪G’(⍺)=N(⍺), it implies 

that (F,T)θR(G,Z)⊆̃(F,T)∗R(G,Z).  

Theorem 2. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, restricted theta operation distributes over other soft set 

operations as follows: 

Theorem 3. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, restricted theta operation distributes over other restricted 

soft set operations as follows: 

i) LHS Distributions: 

1)(F,T)θR[(G,Z)∩R(H,M)]=[(F,T) θR(G,Z)]∪R [(F,T) θR(H,M)

]. 

Proof. Consider first the LHS. Let (G,Z)∩R(H,M)=(R,Z∩M), 

where for every ⍺∊Z∩M, R(⍺)=G(⍺)∩H(⍺). Let 

(F,T) θR(R,Z∩M)=(N,T∩(Z∩M)), whee for every 

⍺∊T∩(Z∩M),  N(⍺)= F’(⍺)∩R’(⍺). Thus, for every ⍺∊T∩Z∩M,   

N(⍺)= F’(⍺)∩[(G’(⍺)∪H’(⍺)] 

Now consider the RHS, i.e. [(F,T) θR(G,Z)] 

∪R [(F,T) θR(H,M)]. Let (F,T) θR (G,Z)=(V,T∩Z), where for 

every ⍺∊T∩Z, V(⍺)=F’(⍺)∩G’(⍺) and let 

(F,T)θR (H,M)=(W,T∩M), where for every ⍺∊T∩M, 

W(⍺)=F’(⍺)∩H’(⍺). 

Let (V,T∩Z) ∪R(W,T∩M)=(S,(T∩Z)∩(T∩M)), where for 

every ⍺∊T∩Z∩M, S(⍺)=V(⍺)∪W(⍺). Thus, 

S(⍺)= [F’(⍺)∩G’(⍺)]∪[F’(⍺)∩H’(⍺)] 

Hence, (N,T∩Z∩M)=(S,T∩Z∩M). Here, if T∩Z=∅ or 

T∩M=∅ or Z∩M=∅, then both sides is  ∅∅.  Thus, the equality 

is satisfied in all circumstances. 

2)(F,T) θR[(G,Z) ∪R(H,M)]=[(F,T) θR(G,Z)]∩R[(F,T) θR (H,M

)]. 

3)(F,T) θR [(G,Z) ＊R(H,M)]=[(F,T) ɣR(G,Z)]∩R[(F,T) ɣR (H,

M)]. 

4)(F,T) θR [(G,Z) θR(H,M)]=[(F,T) ɣR(G,Z)]∪R[(F,T) ɣR (H,M

)].             

ii) RHS Distributions: 

1)[(F,T) ∪R(G,Z)]θR(H,M)=[(F,T) θR(H,M)]∩R[(G,Z) θR (H 

M)]. 

Proof. Consider first the LHS. Let (F,T) ∪R(G,Z)=(R,T∩Z), 

where for every ⍺∊T∩Z, R(⍺)=F(⍺)∪G(⍺). Let 

(R,T∩Z) θR(H,M)=(N,(T∩Z)∩M)), where for every 

⍺∊(T∩Z)∩M, N(⍺)=R’(⍺)∩H’(⍺). Thus, 

N(⍺)= [F’(⍺)∩G’(⍺)]∩H’(⍺) 

Now consider the RHS, i.e., [(F,T) θR(H,M)] ∩R 

[(G,Z) θR (H,M)]. Let (F,T)θR(H,M)=(S,T∩M), where for 

every ⍺∊T∩M, T(⍺)=F’(⍺)∩H’(⍺) and let (G,Z) θR (H,M)= 

(K,Z∩M), where for every ⍺∊Z∩M, K(⍺)=G’(⍺)∩H’(⍺). 

Assume that (S,T∩Z) ∩R(K,Z∩M)=(L,(T∩Z∩M)),  where for 

every ⍺∊(T∩Z)∩(Z∩M), L(⍺)=S(⍺)∩K(⍺). Thus,  

L(⍺)= ([F’(⍺)∩H’(⍺)] ∩ [G’(⍺)∩H’(⍺)] 

Hence, (N,T∩Z∩M)=(L,T∩Z∩M). Here, if T∩Z=∅ or 

T∩M=∅ or Z∩M=∅, then both sides is  ∅∅.  Thus, the equality 

is satisfied in all circumstances. 

2)[(F,T)∩R (G,Z)]θR(H,M)=[(F,T) θR(H,M)]∪R[(G,Z) θR(H,M

)]. 

3)[(F,T) θR(G,Z)]θR (H,M)=[(F,T)\R(H,M)]∪R [(G,Z)\R(H,M

)]. 

4)[(F,T)＊R(G,Z)]θR(H,M)=[(F,T) \R (H,M)]∩R [(G,Z) \R (H,

M)]. 

Theorem 4. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, restricted theta operation distributes over extended soft 

set operations as follows: 

i) LHS Distributions: 

1)(F,T) θR[(G,Z) ∩ε(H,M)]=[(F,T) θR(G,Z)] ∩ε[(F,T) θR (H,M

)]. 

Proof. Consider first the LHS. Let (G,Z) ∩ε (H,M)=(R,Z∪M), 

where for every ⍺∊Z∪M; 

R(⍺) = {

G(⍺), ⍺ ∈ Z − M

H(⍺), ⍺ ∈ M − Z

G(⍺) ∩ H(⍺), ⍺ ∈ Z ∩ M
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Let (F,T)θR(R,Z∪M)=(N,(T∩(Z∪M)), where for every 

⍺∊T∩(Z∪M), N(⍺)=F’(⍺)∩R’(⍺). Thus, 

N(⍺) = {

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ (Z − M)

F′(⍺) ∩ H′(⍺) ⍺ ∈ T ∩ (M − Z)

F′(⍺) ∩ [G′(⍺) ∪ H′(⍺)] , ⍺ ∊ T ∩ (Z ∩ M)

 

Now consider the RHS, i.e. [(F,T) θR(G,Z)] ∩ε 

[(F,T) θR (H,M)]. Let  (F,T)θR(G,Z)=(K,T∩Z), where for every 

⍺∊T∩Z, K(⍺)=F’(⍺)∩G’(⍺) and let (F,T)θR(H,M)=(S,T∩M), 

where for every ⍺∊T∩M, S(⍺)=F’(⍺)∩H’(⍺). Let  

(K,T∩Z) ∩ε(S,T∩M)=(L,(T∩Z)∪(T∩M)), where for every 

⍺∊(T∩Z)∪(T∩M), 

L(⍺) = {

K(⍺), ⍺ ∊ (T ∩ Z) − (T ∩ M)

S(⍺), ⍺ ∊ (T ∩ Z) − (T ∩ M)

K(⍺) ∩ S(⍺), ⍺ ∊ (T ∩ M) ∩ (T ∩ Z)

 

Thus, 

L(⍺) = {

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z ∩ M’

F′(⍺) ∩ H′(⍺) ⍺ ∈ T ∩ Z’ ∩ M

F′(⍺) ∩ [G′(⍺) ∪ H′(⍺)] , ⍺ ∊ T ∩ Z ∩ M

 

Hence, (N, T∩(Z∪M))=(L, (T∩Z)∪(T∩M)). Here, if 

T∩Z=∅, then N(⍺)=L(⍺)=F’(⍺)∩H’(⍺);  and if T∩M=∅, then 

N(⍺)=L(⍺)=F’(⍺)∩G’(⍺). Thus, there is no extra condition as 

T∩Z≠ ∅ and/or T∩M≠ ∅  for satisfying Theorem 4 (i). 

2)(F,T) θR[(G,Z) ∪ε(H,M)]=[(F,T) θR(G,Z)] ∩ε[(F,T) θR (H,M

)]. 

ii) RHS Distributions: 

1)[(F,T)∪ε(G,Z)] θR(H,M)=[(F,T) θR(H,M)] ∩ε [(G,Z) θR (H,

M)]. 

Proof. Consider first the LHS. Let  (F,T) ∪ε(G,Z)=(R,T∪Z), 

where for every ⍺∊ T∪Z, 

R(⍺) = {

F(⍺), ⍺ ∈ T − Z

G(⍺), ⍺ ∈ Z − T

F(⍺) ∪ G(⍺), ⍺ ∈ T ∩ Z

 

Assume that (R,T∪Z) θR(H,M)=(N,(T∪Z)∩M)), where 

for every ⍺∊(T∪Z)∩M, N(⍺)=R’(⍺)∩H’(⍺). Thus, 

N(⍺) = {

F′(⍺) ∩ H′(⍺), ⍺ ∊ (T − Z) ∩ M

G′(⍺) ∩ H′(⍺), ⍺ ∊ (Z − T) ∩ M

[F′(⍺) ∩ G′(⍺)] ∩ H′(⍺), ⍺ ∊ (T ∩ Z) ∩ M

 

Now consider the RHS. Let (F,T) θR (H,M)=(K,T∩M), 

where for every ⍺∊T∩M, K(⍺)=F’(⍺)∩H’(⍺) and let 

(G,Z) θR (H,M)=(S,Z∩M), where for every ⍺∊Z∩M, S(⍺)= 

G’(⍺)∩H’(⍺). Let (K,T∩M) ∩ε(S,Z∩M)=(L,( 

(T∩M)∪(Z∩M)). Hence, 

L(⍺) = {

K(⍺), ⍺ ∊ (T ∩ M) − (Z ∩ M)

S(⍺), ⍺ ∊ (Z ∩ M) − (T ∩ M)

K(⍺) ∩ S(⍺), ⍺ ∊ (T ∩ M) ∩ (Z ∩ M) 

 

Thus, 

L(⍺) = {

F′(⍺) ∩ H′(⍺), ⍺ ∊ T ∩ Z’ ∩ M

G′(⍺) ∩ H′(⍺) ⍺ ∊ T’ ∩ Z ∩ M

[F′(⍺) ∩ G′(⍺)] ∩ H′(⍺), ⍺ ∊ T ∩ Z ∩ M

 

Therefore, (N,(T∪Z)∩M)) = (L,(T∩M)∪(Z∩M)). Here, if 

T∩Z=∅ and ⍺∊T∩Z’∩M, then N(⍺)=L(⍺)=F’(⍺)∩H’(⍺) and if 

T∩Z=∅ and ⍺∊T’∩Z∩M, the N(⍺)=L(⍺)=G’(⍺)∩H’(⍺). 

Furthermore, if Z∩M=∅, then N(⍺)=L(⍺)=F’(⍺)∩H’(⍺). Thus, 

there is no extra condition as T∩Z≠ ∅ and/or Z∩M≠ ∅  for 

satisfying Theorem 4 (ii). 

2)[(F,T) ∩ε(G,Z)] θR(H,M)=[(F,T) θR(G,Z)]∪ε[(G,Z) θR (H,M

)]. 

Theorem 5. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, restricted theta operation distributes over complementary 

extended soft set operations as follows: 

i) LHS Distributions: 

1)(F,T) θR[(G,Z)
＊

  ＊ε
 (H,M)]=[(F,T) ɣR(G,Z)]∩ε[(F,T) ɣR (H,

M)]. 

Proof. Consider first the LHS. Let (G,Z)
＊

＊ε
(H,M)=(R,Z∪M), 

where for every ⍺∊Z∪M, 

R(⍺) = {

G′(⍺), ⍺ ∈ Z − M

H(⍺), ⍺ ∈ M − Z

G′(⍺) ∪ H′(⍺), ⍺ ∈ Z ∩ M

 

Let (F,T)θR(R,Z∪M)=(N,(T∩(Z∪M)), where for every 

⍺∊T∩(Z∪M), N(⍺)=F’(⍺)∩R’(⍺). Thus, 

N(⍺) = {

F′(⍺) ∩ G(⍺), ⍺ ∈ T ∩ (Z − M)

F′(⍺) ∩ H(⍺) ⍺ ∈ T ∩ (M − Z)

F′(⍺) ∩ [G(⍺) ∩ H(⍺)] , ⍺ ∊ T ∩ (Z ∩ M)

 

Now consider the RHS, i.e. [(F,T) ɣR(G,Z)] 

∩ε[(F,T) ɣR (H,M)]. Let (F,T) ɣR (G,Z)=(K,T∩Z) where for 

every ⍺∊T∩Z, K(⍺)=F’(⍺)∩G(⍺). 

Let (F,T)ɣR(H,M)=(S,T∩M), where for every ⍺∊T∩M, 

S(⍺)=F’(⍺)∩H(⍺). Assume that (K,T∩Z)∩ε(S,T∩M)=( 

L,(T∩Z)∪(T∩M)), where for every ⍺∊(T∩Z)∪(T∩M), 

L(⍺) = {

K(⍺), ⍺ ∊ (T ∩ Z) − (T ∩ M)

S(⍺), ⍺ ∊ (T ∩ Z) − (T ∩ M)

K(⍺) ∩ S(⍺), ⍺ ∊ (T ∩ M) ∩ (T ∩ Z)

 

Thus, 

L(⍺) = {

F′(⍺) ∩ G(⍺), ⍺ ∈ T ∩ Z ∩ M’

F′(⍺) ∩ H(⍺) ⍺ ∈ T ∩ Z’ ∩ M

F’(⍺) ∩ [G(⍺) ∪ H(⍺)] , ⍺ ∊ T ∩ Z ∩ M
 

Therefore, (N,(T∩(Z∪M))=(L,(T∩Z)∪(T∩M)). Here, if 

T∩Z=∅, then N(⍺)=L(⍺)=F’(⍺)∩H(⍺);  and if T∩M=∅, then 
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N(⍺)=L(⍺)=F’(⍺)∩G(⍺). Thus, there is no extra condition as 

T∩Z≠ ∅ and/or T∩M≠ ∅  for satisfying Theorem 5 (i). 

2)(F,T) θR [(G,Z) 
＊

  θε
(H,M)]=[(F,T) ɣR(G,Z)] ∪R[(F,T) ɣR (H,

M)]. 

ii) RHS Distributions: 

1)[(F,T) 
＊

θε
(G,Z)]θR(H,M)=[(F,T) \R(H,M)]∪ε[(G,Z) \R (H,M

)]. 

Proof. Consider first the LHS. Let (F,T)
＊

  θε
 (G,Z)=(R,T∪Z), 

where for every ⍺∊T∪Z; 

R(⍺) = {

F′(⍺), ⍺ ∈ T − Z

G′(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

Let (R,T∪Z) θR(H,M)=(N,(T∪Z)∩M), where for every 

⍺∊(T∪Z)∩M, N(⍺)=R’(⍺)∩H’(⍺). Thus, 

N(⍺) = {

F(⍺) ∩ H′(⍺), ⍺ ∊ (T − Z) ∩ M

G(⍺) ∩ H′(⍺) ⍺ ∊ (Z − T) ∩ M

[F(⍺) ∪ G(⍺)] ∩ H′(⍺) , ⍺ ∊ (T ∩ Z) ∩ M

 

Now consider the RHS, i.e. [(F,T) \R(H,M)] 

∪ε[(G,Z) \R (H,M)]. Let (F,T)\R(H,M)=(K,T∩M), where for 

every ⍺∊T∩M, K(⍺)=F(⍺)∩H’(⍺) and let 

(G,Z) \R(H,M)=(S,Z∩M), where for every ⍺∊Z∩M, 

S(⍺)=G(⍺)∩H’(⍺). 

Assume that (K,T∩M)∪ε(S,Z∩M)=(L,(T∩M)∪(Z∩M)), 

where for every ⍺∊(T∩M)∪(Z∩M), 

L(⍺) = {

K(⍺), ⍺ ∊ (T ∩ M) − (Z ∩ M)

S(⍺), ⍺ ∊ (Z ∩ M) − (T ∩ M)

K(⍺) ∪ S(⍺), ⍺ ∊ (T ∩ M) ∩ (Z ∩ M) 

 

Thus, 

L(⍺) = {

F(⍺) ∩ H′(⍺), ⍺ ∊ T ∩ Z’ ∩ M

G(⍺) ∩ H′(⍺) ⍺ ∊ T’ ∩ Z ∩ M

[F(⍺) ∪ G(⍺)] ∩ H′(⍺) , ⍺ ∊ T ∩ Z ∩ M

 

Therefore, (N,(T∪Z)∩M)=(L,(T∩M)∪(Z∩M)). Here, if 

T∩Z=∅ and ⍺∊T∩Z’∩M, then N(⍺)=L(⍺)=F(⍺)∩H’(⍺) and if 

T∩Z=∅ and ⍺∊T’∩Z∩M, the N(⍺)=L(⍺)=G(⍺)∩H’(⍺). 

Furthermore, if Z∩M=∅, then N(⍺)=L(⍺)=F(⍺)∩H’(⍺). Thus, 

there is no extra condition as T∩Z≠ ∅ and/or Z∩M≠ ∅  for 

satisfying Theorem 5 (ii). 

2)[(F,T)
＊

＊ε
(G,Z)] θR(H,M)=[(F,T)\R(G,Z)]∩ε[(G,Z) \R (H,M)

]. 

Theorem 6. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, restricted theta operation distributes over soft binary 

piecewise operations as follows: 

i) LHS Distributions: 

1)(F,T) θR[(G,Z) 
~
∩ (H,M)]=[(F,T) θR(G,Z)]

 ~
 ∪ [(F,T) θR (H,M)

]. 

Proof. Consider first the LHS. Let (G,Z)
~
∩ (H,M)=(R,Z), where 

for every ⍺∊Z;         

R(⍺) = {
G(⍺),  ⍺ ∊ Z − M

G(⍺) ∩ H(⍺), ⍺ ∊ Z ∩ M
 

Let (F,T)θR(R,Z)=(N,T∩Z), where for every ⍺∊T∩Z; 

N(⍺)=F’(⍺)∩R’(⍺). Thus, 

N(⍺) = {
F’(⍺) ∩ G’(⍺),  ⍺ ∊ T ∩ (Z − M)

F’(⍺) ∩ [G’(⍺) ∪ H’(⍺)] , ⍺ ∊ T ∩ (Z ∩ M)
       

Now consider the RHS. Let (F,T)θR(G,Z)=(K,T∩Z), 

where for every ⍺∊T∩Z; K(⍺)=F’(⍺)∩G’(⍺). 

Let (F,T) θR (H,M)=(S,T∩M), where for every ⍺∊T∩M; 

S(⍺)=F’(⍺)∩H’(⍺) and assume that 

(K,T∩Z)
~
∪ (S,T∩M)=(L,T∩Z), where for every ⍺∊T∩Z; 

L(⍺) = {
K(⍺), ⍺ ∊ (T ∩ Z) − (T ∩ M)

K(⍺) ∪ S(⍺), ⍺ ∊ (T ∩ Z) ∩ (T ∩ M)
 

Thus, 

L(⍺) = {
F’(⍺) ∩ G’(⍺) , ⍺ ∊ (T ∩ Z) − (T ∩ M)

F’(⍺) ∩ {G’(⍺) ∪ H’(⍺)], ⍺ ∊ T ∩ (Z ∩ M)
 

Hence (N,T∩Z)=(L,T∩Z). Here, if T∩Z=∅, then 

(N,T∩Z)=(L,T∩Z)=∅∅; and if T∩M=∅, then 

N(⍺)=L(⍺)=F’(⍺∩)G’(⍺). Thus, there is no extra condition as 

T∩Z≠ ∅ and/or T∩M≠ ∅  for satisfying Theorem 6 (i). 

2)(F,T) θR[(G,Z) 
~
∪(H,M)]=[(F,T)θR(G,Z)] 

~
∩ [(F,T) θR (H,M)]

. 

ii) RHS Distributions: 

1)[(F,T) 
~
∪(G,Z)] θR(H,M)=[(F,T) θR(H,M)]

~
∩ [(G,Z) θR (H,M)

]. 

Proof. Consider first the LHS. Let (F,T) 
~
∪ (G,Z)=(R,T) , where 

for every ⍺∊T; 

R(⍺) = {
F(⍺),  ⍺ ∊ T − Z

F(⍺) ∪ G(⍺), ⍺ ∊ T ∩ Z
 

Let (R,T)θR(H,M)=(N,T∩M), where for every ⍺∊T∩M; 

N(⍺)=R’(⍺)∩H’(⍺). Thus,  

N(⍺) = {
F’(⍺) ∩ H’(⍺),  ⍺ ∊ (T − Z) ∩ M

[F’(⍺) ∩ G’(⍺)] ∩ H’(⍺) ,  ⍺ ∊ (T ∩ Z) ∩ M
         

Now consider the RHS. Let (F,T)θR(H,M)=(K,T∩M), 

where for every ⍺∊T∩M; K(⍺)=F’(⍺)∩H’(⍺). Assume that 

(G,Z) θR (H,M)=(S,Z∩M), where for every ⍺∊Z∩M; 

S(⍺)=G’(⍺)∩H’(⍺) and let (K,T∩M) 
~
∩(S,Z∩M)=(L,T∩M), 

where for every ⍺∊T∩M; 
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L(⍺) = {
K(⍺),  ⍺ ∊ (T ∩ M) − (Z ∩ M)

K(⍺) ∩ S(⍺), ⍺ ∊ (T ∩ M) ∩ (Z ∩ M)
     

Hence, 

L(⍺) = {
F’(⍺) ∩ H’(⍺) , ⍺ ∊ (T ∩ M) − (Z ∩ M)

[F’(⍺) ∩ G’(⍺)] ∩ H’(⍺), ⍺ ∊ (T ∩ Z) ∩ M
 

Thus, (N,T∩M)=(L,T∩M). Here, if T∩M=∅, then 

(N,T∩M)=(L,T∩M)=∅∅; and if Z∩M=∅, then 

N(⍺)=L(⍺)=F’(⍺)∩H’(⍺). Thus, there is no extra condition as 

T∩M≠ ∅ and/or Z∩M≠ ∅  for satisfying Theorem 6 (ii). 

2)[(F,T) 
~
∩(G,Z)] θR(H,M)=[(F,T)θR(H,M)]

~
∪ [(G,Z) θR (H,M)

]. 

Extended Theta Operation and Its Properties 

Definition 14. Let (F, T) and (G, Z) be soft sets over U. The 

extended theta operation of (F,T) and (G, Z)  is the soft set 

(H,C), denoted by  (F,T) θε (G,Z)=(H,C), where C=T∪Z and for 

every ⍺∊C, 

H(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

From the definition, it is obvious that if T=∅, then 

(F,T)θε(G,Z)=(G,Z); if Z=∅, then  (F,T)θε(G,Z)=(F,T); if 

T=Z=∅, then (F,T)θε(G,Z)= ∅∅. 

Example 2. Let E={e1,e2,e3,e4}be the parameter set, 

T={e1,e3} and Z={e2,e3,e4} be subsets of E, 

U={h1,h2, h3,h4, h5} be the universal set, (F,T) and (G,Z) be the 

soft sets over U as 

(F,T)={(e1,,{h2,h5),(e3,{h1,h2,h5})},(G,Z)={( e2,{h1,h4,h5}),

{(e3,{h2,h3,h4}),(e4, h3,h5})}. Here let (F,T) 

θε(G,Z)=(H,T∪Z), where for every ⍺∊T∪Z; 

H(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

Since T-Z={e1}, Z-T={e2, e4}, T∩Z={e3}, thus, 

H(e1)=F(e1)={h2,h5},H(e2)=G(e2)={h1,h4,h5},H(e4)=G(e4)=

{h3,h5}, H(e3)=F’(e3) ∩G’(e3)={h3,h4}∩ {h1, h5}=∅. Thus, 

(F,T)θε(G,Z)={(e1,{h2,h5}), (e2,{h1,h4,h5}), (e3, ∅), (e4,{ h3
,h5})} 

Remark 1. In the set ST(U), where T is a fixed subset of E, 

restricted and extended theta operations coincide with each 

other. That is, (F,T) θε(G,T)=(F,T) θR(G,T). 

Theorem 7. Let (F,T), (G,Z), (H,M), (G,T), (H,T), (K,T) and 

(L, T),  be soft sets over U. Then, we have the followings: 

1)  The set SE(U) and ST(U) are closed under θε.  

2) If T∩Z∩M=∅, then  [(F,T)θε(G,Z)] θε(H,M) = (F,T) θε 

[(G,Z) θε (H,M)]. 

3) [(F,T) θε(G,T)] θε (H,T) ≠ (F,T) θε[(G,T) θε(H,T)]. 

4) (F,T) θε(G,Z)=(G,Z) θε (F,T). 

5) (F,T) θε(F,T)= (F, T)r. 

6) (F,T) θε∅T=∅Tθε (F,T)= UT. 

7)  (F,T)θε∅∅=(F,T). 

8) ∅∅ θε(F,T)=(F,T). 

9)  (F, T) θεUT = UTθε(F, T) =  ∅T. 

10) (F,T) θε(F,T)r= (F,T)rθε (F,T)= ∅T. 

11) [(F,T) θε(G,Z)]r=(F,T) 
∗
~
∪
 (G,Z).   

12)  (F,T) θε(G, T)= UT if and only if (F, T) = ∅T   and   

(G, T) = ∅T. 

13) ∅T ⊆̃(F,T)θε(G,Z), ∅Z ⊆̃(F,T)θε(G,Z). Moreover, 

(F,T)θε (G,Z) ⊆̃  UT∪Z. 

14) (F, T)θε(G, T) ⊆̃ (F,T)r and (F, T)θε(G, T) ⊆̃ (G,T)r. 

15) If (F,T) ⊆̃ (G, T), (F,T)θε(G,T) =(G,T)r. 

16) If (F,T)⊆̃ (G, T), (G,T)θε(H,T)⊆̃(F,T)θε(H,T). The 

converse is not true. 

17) If (F,T) ⊆̃ (G, T) and (K,T) ⊆̃ (L, T), (G,T) θε(L,T) ⊆̃(F,T) 

θε(K,T). 

18) (F,T) θε (G,Z) ⊆̃(F,T) ∗ε(G,Z) and (G,Z) θε(F,T) ⊆̃(G,Z) ∗ε 

(F,T). 

Proof. 1) It is clear that θε is a binary operation in SE(U). That 

is,  

θε: SE(U)x SE(U)→ SE(U) 

((F,T), (G,Z)) → (F,T)θε(G,Z)=(H,T∪Z) 

Namely, when (F,T) and (G,Z) are soft set over U, then so  

(F,T) θε (G,Z) . Similarly, ST(U) is closed under θε.  That is, 

                     θε: ST(U)x ST(U)→ ST(U) 

                     ((F,T), (G,T)) → (F, T)θε(G, T)=(K,T∪ T)=(K,T) 

Namely, θε is a binary operation in ST(U). 

2) First, consider the LHS. Let (F,T)θε(G,Z)=(S,T∪Z), where 

for every ⍺∊T∪Z,  

S(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

Let (S,T∪Z)θε(H,M)=(N,(T∪Z)∪M)), where for every 

⍺∊(T∪Z)∪M,  

N(⍺) = {

S(⍺), ⍺ ∊ (T ∪ Z) − M

H(⍺), ⍺ ∊ M − (T ∪ Z)

S′(⍺) ∩ H′(⍺), ⍺ ∊ (T ∪ Z) ∩ M

 

Thus,   

N(⍺)=

{
 
 
 

 
 
 
F(⍺),                                         ⍺ ∊ (T − Z) − M         

G(⍺)                                                   ⍺ ∊ (Z − T) − M

F’(⍺) ∩ G’(⍺)                                   ⍺ ∊ (T ∩ Z) − M

H(⍺),                                                       ⍺ ∊ M-(T∪Z)

 F’(⍺) ∩ H’(⍺),                                 ⍺ ∊ (T − Z) ∩ M
G’(⍺) ∩ H’(⍺),                                ⍺ ∊ (Z − T) ∩ M

[F(⍺) ∪ G(⍺)] ∩ H’(⍺)                      ⍺ ∊ (T∩Z)∩M
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Now consider the RHS. Let (G,Z) θε(H,M)=(R,Z∪M), 

where for every ⍺∊Z∪M; 

R(⍺) = {

G(⍺), ⍺ ∊ Z −M
H(⍺), ⍺ ∊ M − Z

G′(⍺) ∩ H′(⍺), ⍺ ∊ Z ∩ M

 

Let (F,T)θε(R,Z∪M)=(L,(T∪(Z∪M)), where for every 

⍺∊T∪Z∪M; 

L(⍺) = {

F(⍺), ⍺ ∊ T − (Z ∪ M)

R(⍺), ⍺ ∊ (Z ∪ M) − T

F′(⍺) ∩ R′(⍺), ⍺ ∊ T ∩ (Z ∪ M)

 

 Hence, 

L(⍺)=

{
 
 
 

 
 
 
F(⍺),                                               ⍺ ∊ T − (Z ∪ M)      

G(⍺)                                                     ⍺ ∊ (Z − M) − T
H(⍺)                                                     ⍺ ∊ (M − Z) − T

G’(⍺) ∩ H’(⍺)                                      ⍺ ∊ (Z∩M) − T

F’(⍺) ∩ G’(⍺)                                      ⍺ ∊ T ∩ (Z − M)
F’(⍺) ∩ H’(⍺)                                        ⍺ ∊ T∩(M − Z)

 F’(⍺) ∩ [G(⍺) ∪ H(⍺)]                       ⍺ ∊ T∩(Z∩M)

  

It is observed that (N,(T∪Z)∪M)=(L,T∪(Z∪M)), where 

T∩Z∩M=∅. That is, in  SE(U), θε is associative under certain 

conditions. 

3) The proof follows from Remark 1 and Theorem 1 (3).  That 

is, in  ST(U), where T is a fixed subset of E,  θε is not associative. 

4) Let (F,T) θε(G,Z)=(H,T∪Z), where for every ⍺∊T∪Z, 

H(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

Let (G,Z) θε(F,T)=(S,Z∪T), where for every ⍺∊Z∪T, 

S(⍺) = {

G(⍺), ⍺ ∈ Z − Z
F(⍺), ⍺ ∈ T − Z

G′(⍺) ∩ F′(⍺), ⍺ ∈ Z ∩ T

 

Thus, (F,T) θε (G,Z)=(G,Z) θε(F,T). Moreover, it is 

obvious that (F,T) θε (G,T)=(G,T)θε(F,T). That is, in  SE(U) 

and  ST(U), θε is commutative. 

5) The proof follows from Remark 1 and Theorem 1 (5). That 

is, in SE(U), θε is not idempotent. 

6) The proof follows from Remark 1 and Theorem 1 (6). 

7) Let ∅∅=(S,∅) and (F,T) θε(S, ∅)=(H,T∪∅), where for every 

⍺∊T∪∅=T, 

H(⍺) = {

F(⍺), ⍺ ∊ T − ∅ = T
S(⍺),  ⍺ ∊ ∅ − T = ∅

F′(⍺) ∩ S′(⍺), ⍺ ∊ T ∩ ∅ = ∅

 

Thus, H(⍺)=F(⍺), for every ⍺∊T, implying that (H,T)=(F,T).  

8) Let ∅∅=(S,∅) and  (F,T) θε(S, ∅)=(H,T∪∅), where for every 

⍺∊T∪∅=T,   

H(⍺) = {

S(⍺), ⍺ ∊ ∅ − T = ∅
F(⍺), ⍺ ∊ T − ∅ = T

S′(⍺) ∩ F′(⍺), ⍺ ∊ ∅ ∩ T = ∅

 

Thus, for every ⍺∊T, H(⍺)=F(⍺), (H,T)=(F,T).  

By Theorem 7 (7) and (8), we can conclude that in SE(U), 

the identity element of  θε  is the soft set ∅∅. In classical set 

theory, it is well-known that A∪B=∅⟺A=∅ and B=∅. Thus, it 

is evident that in SE(U), we cannot find (G, K) ∈ SE(U) such that 

(F, T) θε(G, K)= (G,K) θε(F, T) = ∅∅; as this situation requires 

that T ∪K=∅ and thus,  T=∅ and K=∅.  Since in SE(U), the only 

soft set with an empty parameter set is ∅∅, it follows that only 

the identity element ∅∅ has an inverse and its inverse it its own 

as usual. Thus, in  SE(U), any other element except ∅∅  does not 

have an inverse for the operation θε. 

Corollary 1. Let  (F,T), (G,Z), and (H,M) be the elements of 

SE(U). By Theorem 7 (1), (2), (4), (7) and (8), (SE(U), θε) is a 

commutative monoid whose identity is ∅∅ where T∩Z∩M=∅. 

Since (SA(U), θε) is not associative, where A is a fixed subset 

of E,  this algebraic structure can not be a semigroup. 

9) The proof follows from Remark 1 and Theorem 1 (10). 

10) The proof follows from Remark 1 and Theorem 1 (13).   

11) Let (F,T) θε(G,Z) =(H,T∪Z), where for every ⍺∊T∪Z; 

H(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

Let (H,T∪Z)r =(K,T∪Z), for every ⍺∊T∪Z; 

K(⍺) = {

F′(⍺), ⍺ ∈ T − Z

G′(⍺), ⍺ ∈ Z − T

F(⍺) ∪ G(⍺), ⍺ ∈ T ∩ Z

 

Thus, (K,T∪Z)= (F,T) 
∗
~
∪
 (G,Z).  

12) The proof follows from Remark 1 and Theorem 1 (15). 

13) The proof is obvious. 

14) The proof follows from Remark 1 and Theorem 1 (17).   

15) The proof follows from Remark 1 and Theorem 1 (18). 

16) The proof follows from Remark 1 and Theorem 1 (19) and 

(20). 

17) The proof follows from Remark 1 and Theorem 1 (21). 

18) Let (F,T)θε(G,Z)=(H,TUZ), where for every ⍺∊TUZ, 

H(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

Let (F,T) ∗ε (G,Z)=(K,TUZ) , where for every ⍺∊TUZ, 

K(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∪ G′(⍺), ⍺ ∈ T ∩ Z
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for every ⍺∊T-Z; H(⍺)=F(⍺) ⊆F(⍺)=K(⍺), for every ⍺∊Z-T; 

H(⍺)=G(⍺)⊆G(⍺)=K(⍺), for every ⍺∈T∩Z; H(⍺)=F’(⍺) 

∩G’(⍺)⊆F’(⍺)∪G’(⍺)= H(⍺), (F,A)θε(G, B) ⊆̃ (F,A) ∗ε (G, B) 

is obtained. 

Theorem 8. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, extended theta operation distributes over other soft set 

operations as follows: 

Theorem 9. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, extended theta operation distributes over extended soft set 

operations as follows: 

i) LHS Distributions 

The following equations are satisfied if T∩ (Z∆M)=TZ ∩M=∅. 

1)(F,T) θε[(G,Z) ∪ε(H,M)]=[(F,T) θε(G,Z)]∪ε[(F,T) θε (H,M).

Proof. Consider first the LHS. Let (G,Z) ∪ε(H,M)=(R,Z∪M), 

where for every ⍺∊Z∪M,  

R(⍺) = {

G(⍺), ⍺ ∊ Z − M

H(⍺), ⍺ ∊ M − Z
  G(⍺) ∪ H(⍺), ⍺ ∊ Z ∩ M

 

Let (F,T) θε(R,Z∪M)=(N,(T∪(Z∪M)), where for every 

⍺∊T∪(Z∪M); 

N(⍺) = {

F(⍺) ⍺ ∊ T − (Z ∪ M)

R(⍺) ⍺ ∊ (Z ∪ M) − T

  F’(⍺) ∩ R’(⍺) ⍺ ∊ T ∩ (Z ∪ M)

   

Thus, 

N(⍺)=

{
 
 
 

 
 
 
F(⍺),                                         ⍺ ∊ T − (Z ∪ M)        

G(⍺),                                                   ⍺∊(Z − M) − T

H(⍺),                                                 ⍺ ∊ (M − Z) − T

G(⍺) ∪ H(⍺),                                       ⍺∊(T ∩ Z) − T

 F’(⍺) ∩ G’(⍺),                                   ⍺ ∊ T ∩ (Z −M)

F’(⍺) ∩ H’(⍺),                                  ⍺ ∊ T ∩ (M − Z)

F’(⍺) ∩ [G’(⍺) ∩ H’(⍺)],                    ⍺∊(T ∩ Z)∩M

 

Now consider the RHS, 

i.e.[(F,T) θε(G,Z)]∪ε[(F,T) θε (H,M)]. (F,T)θε(G, Z)=(K,T∪Z), 

where for every ⍺∊T∪Z; 

K(⍺) = {

F(⍺), ⍺ ∈ T − Z
G(⍺), ⍺ ∈ Z − T

F′(⍺) ∩ G′(⍺), ⍺ ∈ T ∩ Z

 

Let (F,T) θε (H,M)=(S,T∪M), where for every ⍺∊T∪M; 

S(⍺) = {

F(⍺), ⍺ ∈ T − M
H(⍺), ⍺ ∈ M − T

F′(⍺) ∩ H′(⍺), ⍺ ∈ T ∩ M

 

Assume that (K,T∪Z) ∪ε (S,T∪M)=(L,(T∪Z)∪(T∪M)), 

where for every ⍺∊(T∪Z) ∪ (T∪M) Thus, 

L(⍺) = {

K(⍺), ⍺ ∊ (T ∪ Z) − (T ∪ M)

S(⍺), ⍺ ∊ (T ∪ M) − (T ∪ Z)

K(⍺) ∪ S(⍺), ⍺ ∊ (T ∪ M) − (T ∪ Z)

 

Thus,  

L(⍺) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
F(⍺),                                          ⍺ ∊ (T− Z) − (T∪M)

G(⍺),                                              ⍺ ∊ (Z− T)-(T∪M)

F’(⍺) ∩ G’(⍺),                          ⍺ ∊ (T ∩ Z) − (T∪M)

F(⍺),                                           ⍺ ∊ (T−M) − (T∪Z)

H(⍺) ,                                   ⍺ ∊ (M − T)− (T∪Z)=∅

  F’(⍺) ∩ H’(⍺) ,                   ⍺ ∊ (T ∩ M)− (T∪Z)         

F(⍺) ∪ F(⍺),                            ⍺ ∊ (T− Z) ∩ (T−M)

F(⍺) ∪ H(⍺),                     ⍺ ∊ (T− Z) ∩ (M− T)=∅

 F(⍺) ∪ [F’(⍺) ∩ H’(⍺)],    ⍺ ∊ (T − Z) ∩ (T ∩M)=∅

G(⍺) ∪ F(⍺),                      ⍺ ∊ (Z− T) ∩ (T−M)=∅

G(⍺) ∪ H(⍺),                           ⍺ ∊ (Z− T) ∩ (M − T)

G(⍺) ∪ [F’(⍺) ∩ H’(⍺)]         ⍺ ∊ (Z− T) ∩ (T ∩M)

[F’(⍺) ∩ G’(⍺)] ∪ F(⍺) ,  ⍺ ∊ (T ∩ Z) ∩ (T−M)=∅

[F’(⍺) ∩ G’(⍺)] ∪ H(⍺)         ⍺ ∊ (T ∩ Z) ∩ (M − T)

[F’(⍺) ∩ G’(⍺)] ∪  [F’(⍺) ∩ H’(⍺)], ⍺ ∊ T ∩ Z ∩M 

 

 Hence,     

L(⍺)=

{
 
 
 

 
 
 
      G(⍺),                                             ⍺ ∊ T’ ∩ Z ∩ M

H(⍺),                                                 ⍺ ∊ T' ∩ Z' ∩ M

F(⍺),                                                    ⍺ ∊ T ∩ Z’ ∩ M’

F(⍺) ∪ H′(⍺),                                   ⍺ ∊ T ∩ Z’ ∩M

 G(⍺) ∪ H(⍺),                                    ⍺ ∊ T’ ∩ Z ∩ M

G’(⍺) ∪ H(⍺),                                      ⍺ ∊ T ∩ Z ∩ M’

F’(⍺) ∩ [G’(⍺) ∪ H’(⍺)],                    ⍺ ∊ T ∩ Z∩M

 

Therefore, N=L under the condition 

T∩Z’∩M=T∩Z∩M’=T∩Z∩M=∅. It is obvious that the 

condition T∩Z’∩M=T∩Z∩M’=∅ is equivalent to the 

condition T∩ (Z∆M)=∅. 

2)(F,T) θε[(G,Z) ∩ε(H,M)]=[(F,T) θε(G,Z)]∪ε[(F,T) θε (H,M)] 

ii) RHS Distributions 

The following equations are satisfied if 

(T△Z)∩M=T∩Z∩M=∅. 

1)[(F,T) ∩ε(G,Z)] θε(H,M)=[(F,T) θε(H,M)]∩ε[(G,Z) θε (H,M

)]. 

Proof. Consider first the LHS. Let (F,T)∩ε(G,Z)=(R,T∪Z, 

where for every ⍺∊T∪Z;  

R(⍺) = {

F(⍺), ⍺ ∊ T − Z

G(⍺), ⍺ ∊ Z − T
  F(⍺) ∩ G(⍺), ⍺ ∊ T ∩ Z

 

Let (R,T∪Z)θε(H,M)=(N,(T∪Z)∪M).Thus, for every 

⍺∊(T∪Z)∪M; 

N(⍺) = {

R(⍺), ⍺ ∊ (T ∪ Z) − M

H(⍺), ⍺ ∊ M − (T ∪ Z)

  R’(⍺) ∩ H’(⍺),  ⍺ ∊ (T ∪ Z) ∩ M  

 

Hence, 
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N(⍺)=

{
 
 
 

 
 
 
F(⍺),                                                     ⍺ ∊ (T − Z) − M

G(⍺),                                                     ⍺ ∊ (Z − T) − M

H(⍺),                                                     ⍺ ∊ M − (T ∪ Z)

F(⍺) ∩ G(⍺),                                       ⍺ ∊ (T ∩ Z) − M

F’(⍺) ∩ H’(⍺),                                     ⍺ ∊ (T − Z) ∩ M

G’(⍺) ∩ H’(⍺),                                     ⍺ ∊ (Z− T) ∩M

[F’(⍺) ∪ G’(⍺)] ∩ H’(⍺),                       ⍺ ∊ T∩(Z∩M)

 

Now consider the RHS. Let (F,T)θε(H,M)=(S,T∪M), 

where for every ⍺∊T∪M; 

S(⍺) = {

F(⍺), ⍺ ∈ T − M
H(⍺), ⍺ ∈ M − T

F′(⍺) ∩ H′(⍺), ⍺ ∈ T ∩ M

 

Let (G,Z) θε (H,M)=(K,Z∪M), where for every ⍺∊Z∪M 

K(⍺) = {

G(⍺), ⍺ ∊ Z − M
H(⍺), ⍺ ∊ M − Z

  G′(⍺) ∪ H′(⍺), ⍺ ∊ Z ∩ M
 

Assume that (S,T∪Z)∩ε(K,Z∪M)=(W,(T∪Z)∩(Z∪M)), 

where for every ⍺∊(T∪Z)∪(Z∪M); 

L(⍺) = {

K(⍺), ⍺ ∊ (T ∪ Z) − (T ∪ M)

S(⍺), ⍺ ∊ (T ∪ M) − (T ∪ Z)

K(⍺) ∩ S(⍺), ⍺ ∊ (T ∪ M) − (T ∪ Z)

 

Thus, 

L(⍺) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
F(⍺),                                                 ⍺∊(T-M)-(Z∪M)

H(⍺),                                                ⍺∊(M-T)-(Z∪M)

F’(⍺) ∩ H’(⍺),                              ⍺∊(T∩M)-(Z∪M)

G(⍺),                                                ⍺∊(Z-M)-(T∪M)

H(⍺) ,                                          ⍺∊(M-Z)-T∪M)=∅

  G’(⍺) ∩ H’(⍺) ,                             ⍺∊(Z∩M)-(T∪M) 

F(⍺) ∩ G(⍺),                                 ⍺∊(T-M)∩(Z-M)

F(⍺) ∩ H(⍺),                           ⍺∊(T-M)∩(M-Z)=∅

 F(⍺) ∩ [G’(⍺) ∩ H’(⍺)],      ⍺∊(T-M)∩(Z∩M)=∅

H(⍺) ∩ G(⍺),                           ⍺∊(M-T)∩(Z-M)=∅

H(⍺) ∩ H(⍺),                                ⍺∊(M-T)∩(M-Z)

H(⍺) ∩ [G’(⍺) ∩ H’(⍺)]          ⍺∊(M-T)∩(Z∩M)

H(⍺) ∩ [G’(⍺) ∩ H’(⍺)] ,   ⍺∊(T∩M)∩(Z-M)=∅

[F’(⍺) ∩ H’(⍺)] ∩ H(⍺),           ⍺∊(T∩M)∩(M-Z)

[F’(⍺) ∩ H’(⍺)] ∩ [G’(⍺) ∩ H’(⍺)], ⍺∊T∩Z∩M 

 

Hence, 

L(⍺)=

{
 
 
 

 
 
 
F(⍺),                                                    ⍺ ∊ T ∩ Z’ ∩ M’

G(⍺),                                                    ⍺ ∊ T’ ∩ Z ∩ M’ 

H(⍺),                                                   ⍺ ∊ T’ ∩ Z’ ∩ M

F(⍺) ∩ G(⍺),                                       ⍺ ∊ T ∩ Z ∩ M’
∅,                                                         ⍺ ∊ T’ ∩ Z ∩ M
∅,                                                          ⍺ ∊ T ∩ Z' ∩ M

[F’(⍺) ∩ G’(⍺) ∩ H’(⍺),                    ⍺ ∊ T ∩ Z ∩M

 

Therefore, N=L under the condition 

T’∩Z∩M=T∩Z’∩M=T∩Z∩M’=∅. It is obvious that the 

condition T'∩Z∩M=T∩Z'∩M=∅ is equivalent to the condition 

(T∆Z)∩M=∅. 

2)[(F,T) ∪ε(G,Z)] θε(H,M)=[(F,T) θε(H,M)]∩ε[(G,Z) θε (H,M

)]. 

Corollary 2. (SE(U),∪ε,θε) is an additive idempotent 

commutative semiring without zero, but with unity under 

certain conditions. 

Proof. Ali et al. (2011) showed that (SE(U),∪ε) is a 

commutative, idempotent monoid with identity ∅∅ , that is, a 

bounded semilattice (hence a semigroup). (SE(U), θε)  is a 

commutative monoid (hence a semigroup) whose identity is ∅∅ 

under the condition T∩Z∩M=∅, where (F,T), (G,Z) and (H,M) 

are soft sets over U.  Moreover, by Theorem 9 (i) (1), θε 

distributes over ∪ε  from LHS under T∩ (Z∆M)=T∩ Z ∩M=∅, 

and, θε distributes over ∪ε form RHS under the condition 

(T△Z)∩M=T∩Z∩M=∅. Consequently, under the conditions 

T∩Z∩M=(T△Z)∩M=T∩(Z∆M)=∅, (SE(U), ∪ε ,θε)  is an 

additive idempotent commutative semiring without zero, but 

with unity under certain conditions. 

Corollary 3. (SE(U),∩ε,θε) is an additive idempotent 

commutative semiring without zero, but with unity under 

certain conditions. 

Proof. Ali et al. (2011) showed that (SE(U),∩ε)  is a 

commutative, idempotent monoid with identity ∅∅ , that is, a 

bounded semilattice (hence a semigroup). (SE(U), θε)  is a 

commutative monoid (hence a semigroup) whose identity is ∅∅ 

under the condition T∩Z∩M=∅, where (F,T), (G,Z) and (H,M) 

are soft sets over U.  Moreover, θε distributes over ∩ε  from 

LHS under T∩ (Z∆M)=T∩ Z ∩M=∅, and θε distributes over ∩ε 

from RHS under the condition (T△Z)∩M=T∩Z∩M=∅. 

Consequently, under the condition 

T∩Z∩M=(T△Z)∩M=T∩(Z∆M)=∅. (SE(U),∩ε,θε)  is an 

additive idempotent commutative semiring without zero, but 

with unity under certain conditions. 

Theorem 10. Let (F,T), (G,Z), and (H,M) be soft sets over U. 

Then, extended theta operation distributes over soft binary 

piecewise operations as follows: 

i) LHS Distributions 

The following equations are satisfied if 

T∩Z∩M=T∩(Z∆M)=∅. 

1)(F,T) θε[(G,Z) 
~
∩ (H,M)]= [(F,T)θε(G,Z)] 

~
∩[(F,T) θε (H,M)]. 

Proof. First, consider the LHS. Let (G,Z) 
~
∩ (H,M)=(R,Z), 

where for every ⍺∊Z; 

R(⍺) = {
G(⍺), ⍺ ∊ Z − M

G(⍺) ∩ H(⍺), ⍺ ∊ Z ∩ M
 

(F,T)
 
θε(R,Z) =(N,T∪Z), where for every ⍺∊T∪Z; 

N(⍺) = {

F(⍺), ⍺ ∊ T − Z

R(⍺), ⍺ ∊ Z − T
F’(⍺) ∩ R’(⍺), ⍺ ∊ T ∩ Z

 

45



 

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS 

Thus, 

N(⍺)=

{
 
 

 
 
F(⍺),                                                           ⍺ ∊ T− Z

G(⍺),                                               ⍺ ∊ (Z −M) − T

G(⍺) ∩ H(⍺),                                          ⍺ ∊ (Z ∩M)

F’(⍺) ∩ G’(⍺),                                     ⍺ ∊ T ∩ (Z-M)

F’(⍺) ∩ [G’(⍺) ∪ H’(⍺)],             ⍺ ∊ T ∩ (Z ∩M)

 

Now consider the RHS, i.e. [(F,T)θε(G,Z)] 
~
∩[(F,T) θε (H,M)]. Let (F,T) θε(G,Z)=(K,T∪Z), where for 

every ⍺∊T∪Z; 

K(⍺) = {

F(⍺), ⍺ ∊ T − Z

G(⍺), ⍺ ∊ Z − T
F’(⍺) ∩ R’(⍺), ⍺ ∊ T ∩ Z

 

Let (F,T) θε(H,M)=(S,T∪M), where for every ⍺∊T∪M; 

S(⍺) = {

F(⍺), ⍺ ∊ T −M

H(⍺), ⍺ ∊ M − T
F’(⍺) ∩ H’(⍺), ⍺ ∊ T ∩ M

 

Let (K,T∪Z) 
~
∩(S,T∪M)=(L,(T∪Z)∪(T∪M)), where for 

every ⍺∊(T∪Z)∪(T∪M); 

L(⍺) = {
K(⍺), ⍺ ∊ (T ∪ Z) − (T ∪ M)

K(⍺) ∩ S(⍺),  ⍺ ∊ (T ∪ Z) ∩ (T ∪ M)
 

Thus,  

L(⍺)=

{
 
 
 
 
 
 

 
 
 
 
 
 
F(⍺),                                     ⍺ ∊ (T− Z) − (T∪M)=∅

G(⍺),                                        ⍺ ∊ (Z − T) − (T ∪ M)

F’(⍺) ∩ G’(⍺),                     ⍺ ∊ (T ∩ Z) − (T∪M)=∅

F(⍺) ∩ F(⍺),                         ⍺ ∊ (T − Z) ∩ (T − M)

F(⍺) ∩ H(⍺),                     ⍺ ∊ (T− Z) ∩ (M− T)=∅

F(⍺) ∩ [F’(⍺) ∩ H’(⍺)],       ⍺ ∊ (T− Z) ∩ (T ∩ M)

G(⍺) ∩ F(⍺),                      ⍺ ∊ (Z− T) ∩ (T−M)=∅

G(⍺) ∩ H(⍺),                          ⍺ ∊ (Z − T) ∩ (M − T)

 G(⍺) ∩ [F’(⍺) ∩ H’(⍺)],   ⍺ ∊ (Z− T) ∩ (T ∩M)=∅
[F’(⍺) ∩ G’(⍺)] ∩ F(⍺)          ⍺ ∊ (T ∩ Z) ∩ (T−M)

 [F’(⍺) ∩ G’(⍺)] ∩ H(⍺)     ⍺ ∊ (T ∩ Z) ∩ (M − T)=∅

 [F’(⍺) ∩ G’(⍺)] ∩ [F’(⍺) ∩ H’(⍺)],     ⍺ ∊ T ∩ Z ∩ M

 

Thus, 

L(⍺)=

{
 
 

 
 
G(⍺),                                                  ⍺ ∊ T ∩ Z ∩M'

F(⍺),                                                  ⍺ ∊ T ∩ Z′ ∩ M’
 ∅,                                                       ⍺ ∊ T' ∩ Z' ∩M

G(⍺) ∩ H(⍺),                                     ⍺ ∊ T’ ∩ Z ∩ M
 ∅,                                                        ⍺ ∊ T ∩ Z ∩M'
F’(⍺) ∩ [G’(⍺) ∩ H’(⍺],                ⍺ ∊ T ∩ Z ∩ M

 

When considering T-Z in the function N, since T-Z=T∩Z’, 

if an element is in the complement of Z, it is either in M-Z, or  

(M∪Z)’. Thus, if ⍺∈T-Z, then either ⍺∈ T∩M∩Z’ or  ⍺∈ 

T∩M’∩Z’.Therefore, N=L under the condition 

T∩Z∩M=T∩Z’∩M=T∩Z∩M’=∅. It is obvious that the 

condition T’∩Z∩M=T∩Z'∩M=∅ is equivalent to the 

condition (T∆Z)∩M=∅. 

2)(F,T) θε [(G,Z) 
~
∪ H,M)]= [(F,T)θε(G,Z)] 

~
∪ [(F,M) θε (G,Z)]. 

ii) RHS Distributions 

The following equations are satisfied if 

(T∆Z)∩M=T∩Z∩M =∅. 

1)[(F,T)
~
∪ (G,Z)] θε (H,M)=[(F,T)θε(H,M)] 

~
∪ [(G,Z) θε(H,M)]

. 

Proof. First, consider the LHS of the equality. Let  (F,T) 
~
∪ 

(G,Z)=(R,T), where for every ⍺∊T; 

R(⍺) = {
F(⍺), ⍺ ∊ T − Z

F(⍺) ∪ G(⍺), ⍺ ∊ T ∩ Z
 

Let (R,T)
 
θε (H,M) =(N,T∪M), where for every ⍺∊T∪M; 

N(⍺) = {

R(⍺), ⍺ ∊ T −M

H(⍺), ⍺ ∊ M − T
R’(⍺) ∩ H’(⍺), ⍺ ∊ T ∩ M

 

Thus,            

N(⍺)=

{
 
 

 
 
F(⍺),                                                      ⍺ ∊ (T− Z) −M

F(⍺) ∪ G(⍺)                                       ⍺ ∊ (T ∩ Z) − M

H(⍺),                                                              ⍺ ∊ M− T

F’(⍺) ∩ H’(⍺),                                    ⍺ ∊ (T− Z) ∩M

[F’(⍺) ∩ G’(⍺)] ∩ H’(⍺),                  ⍺ ∊ T ∩ (Z ∩M)

  

Now consider the RHS. Let (F,T) θε(H,M)=(K,T∪M), 

where for every ⍺∊T∪M; 

K(⍺) = {

F(⍺), ⍺ ∊ T − M

H(⍺), ⍺ ∊ M − T
F’(⍺) ∩ H’(⍺), ⍺ ∊ T ∩ M

 

Let (G,Z) θε (H,M)=(S,T∪M), where for every ⍺∊Z∪M; 

S(⍺) = {

G(⍺), ⍺ ∊ Z − M

H(⍺), ⍺ ∊ M − Z
G’(⍺) ∩ H’(⍺), ⍺ ∊ Z ∩ M

 

Let (K,T∪M) 
~
∪ (S,Z∪M)=(L,(T∪M)∪(Z∪M)), where for 

every ⍺∊(T∪M)∪(Z∪M); 

L(⍺) = {
K(⍺), ⍺ ∊ (T ∪ M) − (Z ∪ M)

K(⍺) ∪ S(⍺), ⍺ ∊ (T ∪ M) ∩ (Z ∪ M) 
        

L(⍺)=

{
 
 
 
 
 
 

 
 
 
 
 
 
F(⍺),                                             ⍺ ∊ (T−M)− (Z∪M)

H(⍺),                                    ⍺ ∊ (M − T) − (Z ∪ M)=∅

F’(⍺) ∩ H'(⍺),                         ⍺ ∊ (T ∩ Z) − (Z∪M)=∅

F(⍺) ∪ G(⍺),                             ⍺ ∊ (T − M) ∩ (Z − M)

F(⍺) ∪ H(⍺),                       ⍺ ∊ (T−M) ∩ (M− Z)=∅

F(⍺) ∪ [G’(⍺) ∩ H’(⍺)],   ⍺ ∊ (T−M) ∩ (Z ∩M)=∅

H(⍺) ∪ G(⍺),                          ⍺ ∊ (M − T) ∩ (Z-M)=∅

H(⍺) ∪ H(⍺),                          ⍺ ∊ (M − T) ∩ (M − Z)
 H(⍺) ∪ [G’(⍺) ∩ H’(⍺)],       ⍺ ∊ (M− T) ∩ (Z ∩ M)

[F’(⍺) ∩ H’(⍺)] ∪ G(⍺),      ⍺ ∊ (T ∩M) ∩ (Z-M)=∅

 [F’(⍺) ∩ H’(⍺)] ∪ H(⍺),        ⍺ ∊ (T ∩ Z) ∩ (M-Z)=∅

 [F’(⍺) ∩ H’(⍺)] ∪ [G’(⍺) ∩ H’(⍺)],     ⍺ ∊ T ∩ Z ∩ M
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Hence, 

L(⍺)=

{
 
 

 
 
F(⍺),                                                ⍺ ∊ T ∩ Z' ∩M'

F(⍺) ∪ G(⍺),                                   ⍺ ∊ T ∩ Z ∩ M’
 H(⍺),                                              ⍺ ∊ T' ∩ Z' ∩M

H(⍺) ∪ G’(⍺),                                ⍺ ∊ T’ ∩ Z ∩ M
F’(⍺) ∪ H(⍺),                                ⍺ ∊ T ∩ Z’ ∩M

[F’(⍺) ∪ G’(⍺)] ∩ H’(⍺),              ⍺ ∊ T ∩ Z ∩ M

 

When considering M-T in the function N, since M-

T=M∩T’, if an element is in the complement of  T, then it is 

either in Z-T or  (Z∪T)’. Thus if ⍺∈M-T, then ⍺∈ M∩Z∩T’ or 

⍺∈M∩Z’∩T’. Thus, N=L under T’∩Z∩M= T∩Z’∩M = 

T∩Z∩M =∅. 

2) [(F,T)
~
∩ (G,Z)] θε (H,M) = [(F,T)θε(H,M)] 

~
∩ [(G,Z) θε (H,M 

)]. 

Corollary 4. (SE(U),
~
∪,θε)  is an additive idempotent 

multiplicative commutative semiring without zero, but with 

unity under certain conditions. 

Proof. Yavuz (2024) showed that (SE(U), 
~
∪)  is an idempotent, 

non-commutative semigroup (that is a band) under the condition 

T∩Z’∩M =∅, where (F,T), (G,Z) and (H,M) are soft sets. 

(SE(U), θε)  is a commutative monoid (hence a semigroup) 

whose identity is ∅∅ under the condition T∩Z∩M=∅, where 

(F,T), (G,Z) and (H,M) are soft sets over U.  Moreover, θε 

distributes over 
~
∪ from LHS under T∩Z∩M=T∩(Z∆M)=∅, and 

θε distributes over 
~
∪  from RHS under the condition 

(T∆Z)∩M=T∩Z∩M =∅. Consequently, under the conditions 

T∩Z∩M=T∩(Z∆M)=(T∆Z)∩M=T∩Z’∩M=∅, (SE(U),
~
∪,θε) is 

an additive idempotent multiplicative commutative semiring 

without zero, but with unity under certain conditions. 

Corollary 5. (SE(U),
~
∩,θε)  is an additive idempotent 

multiplicative commutative semiring without zero, but with 

unity under certain conditions. 

Proof. Yavuz (2024) showed that (SE(U), 
~
∩)  is an idempotent, 

commutative semigroup (that is a band) under the condition 

T∩Z’∩M =∅, where (F,T), (G,Z) and (H,M) are soft sets. 

(SE(U), θε)  is a commutative monoid (hence a semigroup) 

whose identity is ∅∅ under the condition T∩Z∩M=∅, where 

(F,T), (G,Z) and (H,M) are soft sets over U.  Moreover, θε 

distributes over 
~
∩ from LHS under T∩Z∩M=T∩(Z∆M)=∅ and 

θε distributes over 
~
∩  from RHS under the condition 

(T∆Z)∩M=T∩Z∩M=∅. Consequently, under the conditions 

T∩Z∩M=T∩(Z∆M)=(T∆Z)∩M=T∩Z’∩M=∅, (SE(U), 
~
∩,θε) is 

an additive idempotent multiplicative commutative semiring 

without zero, but with unity under certain conditions. 

CONCLUSION 

Parametric techniques like soft sets and soft operations are 

very useful when dealing with uncertainty. Introducing new soft 

operations and figuring out their algebraic properties and uses 

opens up new ways to solve problems with parametric data. This 

work introduces a novel restricted and extended soft set 

operation in this manner. By putting out the idea of "restricted 

and extended theta operations of soft sets" and by carefully 

examining the algebraic structures associated with these and 

other specific kinds of soft set operations, we hope to make a 

meaningful contribution to the field of soft set theory. 

Specifically, an extensive analysis is conducted on the algebraic 

characteristics of these new soft set operations. Taking into 

account the algebraic properties of these soft set operations and 

distribution laws, a thorough study of the algebraic structures 

formed by these operations in the collection of soft sets over the 

universe is presented. We demonstrate that, under some 

assumptions, (SE(U),θε) is a commutative monoid with identity 

∅∅. Furthermore, we demonstrate how several significant 

algebraic structures, including semirings, are formed in the 

collection of soft sets over the universe combined with extended 

theta operations and other kinds of soft set operations: 

(SE(U),∪ε,θε), (SE(U),∩ε, θε) are all additive idempotent 

commutative semirings without zero but with unity under 

certain conditions.(SE(U),
~
∩, θε),  (SE(U),

~
∪, θε)  are all additive 

idempotent multiplicative commutative semirings without zero 

but with unity under certain conditions. 

By examining novel soft set operations and the algebraic 

structures of soft sets, we can fully comprehend their 

application. This can advance soft set theory and the classic 

algebraic literature in addition to offering new examples of 

algebraic structures. Future research might look at other 

varieties of new restricted and extended soft set operations, as 

well as the matching distributions and characteristics, to add to 

this body of knowledge.  
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