Dietary factors and thyroid dysfunction

  • Ivana Djuričić University of Belgrade – Faculty of Pharmacy, Department of Bromatology
  • Vanja Todorović University of Belgrade – Faculty of Pharmacy, Department of Bromatology
  • Nevena Dabetić University of Belgrade – Faculty of Pharmacy, Department of Bromatology
  • Milica Zrnić Ćirić University of Belgrade – Faculty of Pharmacy, Department of Bromatology
  • Nevena Ivanović University of Belgrade – Faculty of Pharmacy, Department of Bromatology
  • Bojana Vidović University of Belgrade – Faculty of Pharmacy, Department of Bromatology
Keywords: thyroid disease, diet, micronutrients, nutraceuticals, goitrogens


Besides iodine deficiency, autoimmune Hashimoto thyroiditis is the leading cause of hypothyroidism globally, characterized by the increased titer of thyroid autoantibodies and destruction of thyroid cells. Graves' disease is the most common etiology of hyperthyroidism worldwide. Patients with thyroid dysfunction often require dietary modifications. Popular interventions include supplementation with certain vitamins and minerals, as well as trace elements such as iodine and selenium. The intake of food containing goitrogens should be limited. Goitrogens are substances of plant origin that interfere with the production of thyroid hormones, increasing the risk for goiter and hypothyroidism. The primary dietary sources of goitrogens are cruciferous vegetables, soy products, starchy plants, and some fruits. Beyond essential nutrients, there has been an increasing interest in using specific nutraceuticals, including myoinositol, L-carnitine, melatonin, and resveratrol, as potential preventive and therapeutic agents in thyroid diseases. Even though current evidence promotes some beneficial outcomes of these nutraceuticals, further investigations are needed to clarify dose-dependent effects, duration of supplementation, combination in different clinical settings, and the exact mechanism of their action in thyroid disorders.


style='font-size:12.0pt;line-height:200%;font-family:"Times New Roman","serif";


style='mso-spacerun:yes'> ADDIN EN.REFLIST

field-separator'>1. Babić Leko M, Gunjača I, Pleić N, Zemunik T. Environmental factors affecting thyroid-stimulating hormone and thyroid hormone levels. Int J Mol Sci. 2021;22(12):6521.

2. Ferrari SM, Fallahi P, Antonelli A, Benvenga S. Environmental issues in thyroid diseases. Front Endocrinol. 2017;8:50.

3. McGregor B. The role of selenium in thyroid autoimmunity: a review. J Restor Med. 2015;4:83.

4. Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301-16.

5. Bashar MA, Begam N. Role of dietary factors in thyroid disorders: Current evidences and way forwards. Thyroid Res Pract. 2020;17(3):104.

6. Benvenga S, Feldt-Rasmussen U, Bonofiglio D, Asamoah E. Nutraceutical supplements in the thyroid setting: health benefits beyond basic nutrition. Nutrients. 2019;11(9):2214.

7. Chung HR. Iodine and thyroid function. Ann Pediatr Endocrinol Metab. 2014;19(1):8.

8. Shahid MA, Ashraf MA, Sharma S. Physiology, thyroid hormone. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 2022 Aug 4]. Available from:>

9. Wang B, He W, Li Q, Jia X, Yao Q, Song R, et al. U-shaped relationship between iodine status and thyroid autoimmunity risk in adults. Eur J Endocrinol. 2019;181(3):255-66.

10. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286-95.

11. De la Vieja A, Dohan O, Levy O, Carrasco N. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev. 2000;80(3):1083-105.

12. Vargatu I. Williams textbook of endocrinology. ACTA ENDOCRINOL-BUCH. 2016;12(1):113.

13. Leung AM, Avram AM, Brenner AV, Duntas LH, Ehrenkranz J, Hennessey JV, et al. Potential risks of excess iodine ingestion and exposure: statement by the American Thyroid Association Public Health Committee. Thyroid. 2015;25(2):145-6.

14. Teti C, Panciroli M, Nazzari E, Pesce G, Mariotti S, Olivieri A, et al. Iodoprophylaxis and thyroid autoimmunity: an update. Immunol Res. 2021;69(2):129-38.

15. Mezzomo TR, Nadal J. Efeito dos nutrientes e substâncias alimentares na função tireoidiana e no hipotireoidismo. DEMETRA: Alimentação, Nutrição & Saúde. 2016;11(2):427-43.

16. Meyers LD, Hellwig JP, Otten JJ. Dietary reference intakes: the essential guide to nutrient requirements. Washington: National Academies Press; 2006.

17. Rayman MP. Selenium and human health. The Lancet. 2012;379(9822):1256-68.

18. Kryczyk-Kozioł J, Prochownik E, Błażewska-Gruszczyk A, Słowiaczek M, Sun Q, Schomburg L, et al. Assessment of the Effect of Selenium Supplementation on Production of Selected Cytokines in Women with Hashimoto’s Thyroiditis. Nutrients. 2022;14(14):2869.

19. Ventura M, Melo M, Carrilho F. Selenium and thyroid disease: from pathophysiology to treatment. Int J Endocrinol. 2017;2017:1297658.

20. Duntas LH, Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756-75.

21. Gorini F, Sabatino L, Pingitore A, Vassalle C. Selenium: an element of life essential for thyroid function. Molecules. 2021;26(23):7084.

22. Pirahanchi Y, Toro F, Jialal I. Physiology, Thyroid Stimulating Hormone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 2022 Aug 4]. Available from:>

23. Lacka K, Szeliga A. Significance of selenium in thyroid physiology and pathology. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego. 2015;38(228):348-53.

24. Wichman J, Winther KH, Bonnema SJ, Hegedüs L. Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid. 2016;26(12):1681-92.

25. Winther KH, Rayman MP, Bonnema SJ, Hegedüs L. Selenium in thyroid disorders—essential knowledge for clinicians. Nat Rev Endocrinol. 2020;16(3):165-76.

26. Verma AK, Kumar A, Rahal A, Kumar V, Roy D. Inorganic versus organic selenium supplementation: a review. Pak J Biol Sci: PJBS. 2012;15(9):418-25.

27. Gaitan E. 9 Goitrogens. Baillieres Clin Endocrinol Metab. 1988;2(3):683-702.

28. Messina M, Redmond G. Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: a review of the relevant literature. Thyroid. 2006;16(3):249-58.

29. Muzzaffar S, Nazir T, Bhat MM, Wani IA, Masoodi F. Goitrogens. In: Nayik GA & Kour J (Eds.). Handbook of Plant and Animal Toxins in Food: Occurrence, Toxicity, and Prevention. Boca Raton: CRC Press; 2022; p. 125-54.30. López-Moreno M, Garcés-Rimón M, Miguel M. Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe? J Funct Foods. 2022;89:104938.

31. Di Bernardo J, Iosco C, Rhoden KJ. Intracellular anion fluorescence assay for sodium/iodide symporter substrates. Anal Biochem. 2011;415(1):32-8.

32. Prieto M, López CJ, Simal-Gandara J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv Food Nutr Res. 2019;90:305-50.

33. Babiker A, Alawi A, Al Atawi M, Al Alwan I. The role of micronutrients in thyroid dysfunction. Sudan J Paediatr. 2020;20(1):13.

34. Tian S, Liu X, Lei P, Zhang X, Shan Y. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. J Sci Food Agric. 2018;98(4):1255-60.

35. Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: A review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr. 2021;61(15):2544-71.

36. Otun J, Sahebkar A, Östlundh L, Atkin SL, Sathyapalan T. Systematic review and meta-analysis on the effect of soy on thyroid function. Sci Rep. 2019;9(1):1-9.

37. Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol. 2021;152:112158.

38. Shih A, Davis FB, Lin H-Y, Davis PJ. Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK-and p53-dependent mechanism. J Clin Endocrinol Metab. 2002;87(3):1223-32.

39. Duntas L. Resveratrol and its impact on aging and thyroid function. J Endocrinol Invest. 2011;34(10):788-92.

40. Giuliani C, Iezzi M, Ciolli L, Hysi A, Bucci I, Di Santo S, et al. Resveratrol has anti-thyroid effects both in vitro and in vivo. Food Chem Toxicol. 2017;107:237-47.

41. Benvenga S, Antonelli A. Inositol (s) in thyroid function, growth and autoimmunity. Rev Endocr Metab Disord. 2016;17(4):471-84.

42. Dinicola S, Minini M, Unfer V, Verna R, Cucina A, Bizzarri M. Nutritional and acquired deficiencies in inositol bioavailability. Correlations with metabolic disorders. Int J Mol Sci. 2017;18(10):2187.

43. Majumder AL, Biswas B. Biology of inositols and phosphoinositides. New York, NY: Springer Science & Business Media; 2006.

44. Frej AD, Clark J, Le Roy CI, Lilla S, Thomason PA, Otto GP, et al. The inositol-3-phosphate synthase biosynthetic enzyme has distinct catalytic and metabolic roles. Mol Cell Biol. 2016;36(10):1464-79.

45. Benvenga S, Nordio M, Laganà AS, Unfer V. The role of inositol in thyroid physiology and in subclinical hypothyroidism management. Front Endocrinol. 2021:458.

46. Piras C, Pibiri M, Leoni V, Balsamo A, Tronci L, Arisci N, et al. Analysis of metabolomics profile in hypothyroid patients before and after thyroid hormone replacement. J Endocrinol Invest. 2021;44(6):1309-19.

47. Barbaro D, Orrù B, Unfer V. Iodine and myo-inositol: a novel promising combination for iodine deficiency. Front Endocrinol. 2019;10:457.

48. Nordio M, Basciani S. Treatment with myo-inositol and selenium ensures euthyroidism in patients with autoimmune thyroiditis. Int J Endocrinol. 2017;2017: 2549491.

49. Nordio M, Basciani S. Myo-inositol plus selenium supplementation restores euthyroid state in Hashimoto’s patients with subclinical hypothyroidism. Eur Rev Med Pharmacol Sci. 2017;21(Suppl 2):51-9.

50. Ferrari S, Fallahi P, Di Bari F, Vita R, Benvenga S, Antonelli A. Myo-inositol and selenium reduce the risk of developing overt hypothyroidism in patients with autoimmune thyroiditis. Eur Rev Med Pharmacol Sci. 2017;21(2 Suppl):36-42.

51. Nordio M, Basciani S. Evaluation of thyroid nodule characteristics in subclinical hypothyroid patients under a myo-inositol plus selenium treatment. Eur Rev Med Pharmacol Sci. 2018;22(7):2153-9.

52. Li J, Liu L, Weng J, Yin Tl, Yang J, Feng HL. Biological roles of l‐carnitine in oocyte and early embryo development. Mol Reprod Dev. 2021;88(10):673-85.

53. Sarzi-Puttini P, Giorgi V, Di Lascio S, Fornasari D. Acetyl-l-carnitine in chronic pain: A narrative review. Pharmacol Res. 2021;173:105874.

54. Virmani MA, Cirulli M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int J Mol Sci. 2022;23(5):2717.

55. Li N, Zhao H. Role of carnitine in non-alcoholic fatty liver disease and other related diseases: An update. Front Med. 2021;8:689042.

56. Benvenga S, Amato A, Calvani M, Trimarchi F. Effects of carnitine on thyroid hormone action. Ann N Y Acad Sci. 2004;1033(1):158-67.

57. An JH, Kim YJ, Kim KJ, Kim SH, Kim NH, Kim HY, et al. L-carnitine supplementation for the management of fatigue in patients with hypothyroidism on levothyroxine treatment: a randomized, double-blind, placebo-controlled trial. Endocr J. 2016;63(10):885-895..

58. Nordio M. A novel treatment for subclinical hyperthyroidism: a pilot study on the beneficial effects of l-carnitine and selenium. Eur Rev Med Pharmacol Sci. 2017;21(9):2268-73.

59. Anghel L, Baroiu L, Popazu CR, Pătraș D, Fotea S, Nechifor A, et al. Benefits and adverse events of melatonin use in the elderly. Exp Ther Med. 2022;23(3):1-8.

60. Kvetnoy I, Ivanov D, Mironova E, Evsyukova I, Nasyrov R, Kvetnaia T, et al. Melatonin as the Cornerstone of Neuroimmunoendocrinology. Int J Mol Sci. 2022;23(3):1835.

61. Garcia-Marin R, Fernandez-Santos J, Morillo-Bernal J, Gordillo-Martinez F, Vazquez-Roman V, Utrilla J, et al. Melatonin in the thyroid gland: regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression. J Physiol Pharmacol. 2015;66(5):643-52.

62. Li J, Somers VK, Xu H, Lopez-Jimenez F, Covassin N. Trends in Use of Melatonin Supplements Among US Adults, 1999-2018. JAMA. 2022;327(5):483-5.

63. Üstündağ H, Şentürk E, Gül M. Melatonin and hyperthyroidism. Arch Basic Clin Res. 2020;2(2):59-64.

64. Singh SS, Laskar P, Deb A, Sutradhar S. Melatonin Modulates Hypophyseal-Thyroid Function through Differential Activation of MT1 and MT2 Receptors in Hypothyroid Mice. In: Kostoglou-Athanassiou I, editor. Hypothyroidism-New Aspects of an Old Disease [Internet]. London: IntechOpen; 2022 [cited 2022 Jul 30]. Available from: doi: 10.5772/intechopen.100524

65. Lin J-D, Fang W-F, Tang K-T, Cheng C-W. Effects of exogenous melatonin on clinical and pathological features of a human thyroglobulin-induced experimental autoimmune thyroiditis mouse model. Sci Rep. 2019;9(1):1-12.

66. Bellipanni G, Bianchi P, Pierpaoli W, Bulian D, Ilyia E. Effects of melatonin in perimenopausal and menopausal women: a randomized and placebo controlled study. Exp Gerontol. 2001;36(2):297-310.

67. Bellipanni G, Di Marzo F, Blasi F, Di Marzo A. Effects of melatonin in perimenopausal and menopausal women: our personal experience. Ann N Y Acad Sci. 2005;1057(1):393-402.

68. D’Anna R, Santamaria A, Giorgianni G, Vaiarelli A, Gullo G, Di Bari F, et al. Myo-inositol and melatonin in the menopausal transition. Gynecol Endocrinol. 2017;33(4):279-82.

69. Souissi A, Dergaa I, Chtourou H, Ben Saad H. The Effect of Daytime Ingestion of Melatonin on Thyroid Hormones Responses to Acute Submaximal Exercise in Healthy Active Males: A Pilot Study. Am J Mens Health. 2022;16(1):15579883211070383.

line-height:115%;font-family:"Times New Roman","serif";mso-fareast-font-family:





Review articles