FEATURES OF THE INNATE IMMUNE RESPONSE DURING THE SARS-COV-2 INFECTION

  • Tanja Džopalić Univerzitet u Nišu Medicinski fakultet Katedra imunologije
  • Milica Veljković University of Niš, Medical Faculty, Department of Physiology, Niš, Serbia
  • Marko Bjelaković University Clinical Center Niš, Clinic of Lung Diseases, Niš, Serbia
  • Branislav Jovanović University Clinical Center Niš, Clinic of Cardiovascular Surgery, Niš, Serbia
Keywords: SARS-CoV-2, COVID-19, inflammation, cytokines, receptors

Abstract


First reports of the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the disease caused by the virus—coronavirus disease 2019 (COVID-19), were announced in late December 2019. Ever since, the disease has taken more than 6 million lives worldwide. COVID-19 is considered as dominantly respiratory and vascular disease which pathogenesis could be explained by hyperactivation of the immune response. Innate immunity receptors are responsible for the first contact with the virus and subsequent activation of transcription factors leading to the production of the high amounts of interferons (IFNs) and proinflammatory cytokines (IL-1β, IL-6, TNF, etc.). Such an inflammatory response limits viral replications. However, SARS-CoV-2 have developed several ways to avoid immune protection by the host. Dysregulated secretion of these cytokines may lead to cytokine storm and PANoptosis, a life-threatening condition.

This review article aims to describe the main characteristics of the innate immune response during the SARS-CoV-2 infection.

References

Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol 2021; 6(62): eabl4348. [PubMed]

Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: general molecular and structural biology. J Immunol Res. 2021; 2021:9914854. [CrossRef] [PubMed]

Cascella M, Rajnik M, Aleem A, Dulebohn S, Di Napoli R. Features, evaluation, and treatment of Coronavirus (COVID-19) [Updated 2022 Oct 13]. In: StatPearls Treasure Island (FL): StatPearls Publishing; 2022. [PubMed]

Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol 2020; 92(10):2105-13. [CrossRef] [PubMed]

Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 2022; 23(2):165-76. [CrossRef] [PubMed]

Dzopalic T, Rajkovic I, Dragicevic A, Colic M. The response of human dendritic cells to co-ligation of pattern-recognition receptors. Immunol Res 2012; 52(1-2):20-33. [CrossRef] [PubMed]

Fenizia C, Galbiati S, Vanetti C, Vago R, Clerici M, Tacchetti C, et al. SARS-CoV-2 entry: At the crossroads of CD147 and ACE2. Cells 2021; 10(6):1434. [CrossRef] [PubMed]

Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci 2021; 22(3):992. [CrossRef] [PubMed]

Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinform Biol Insights 2021; 15: 11779322211025876. [CrossRef] [PubMed]

Guo ZD, Wang ZY, Zhang SF, Li X, Li L, Li C, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis 2020; 26(7):1583-91. [CrossRef] [PubMed]

Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int J Mol Sci 2022; 23(3):1716. [CrossRef] [PubMed]

Hasan SS, Capstick T, Ahmed R, Kow CS, Mazhar F, Merchant HA, et al. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Rev Respir Med 2020; 14(11):1149-63. [CrossRef] [PubMed]

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506. [CrossRef] [PubMed]

Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev 2020; 100(3):1065-75. [CrossRef] [PubMed]

Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021; 184(1):149-168.e17. [CrossRef] [PubMed]

Kasuga Y, Zhu B, Jang KJ, Yoo JS. Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 2021; 53(5):723-36. [CrossRef] [PubMed]

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11:373–84. [CrossRef] [PubMed]

Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019; 20(13):3328. [CrossRef] [PubMed]

Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, Koyanagi Y, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep 2020; 32(12):108185. [CrossRef] [PubMed]

Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 2020; 26(10):1623-35. [CrossRef] [PubMed]

Livanos AE, Jha D, Cossarini F, Gonzalez-Reiche AS, Tokuyama M, Aydillo T. et al. Intestinal host response to SARS-CoV-2 infection and COVID-19 outcomes in patients with gastrointestinal symptoms. Gastroenterology 2021; 160(7):2435-50.e34. [CrossRef] [PubMed]

Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584(7821):463-9. [CrossRef] [PubMed]

Masre SF, Jufri NF, Ibrahim FW, Abdul Raub SH. Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol 2021; 31(5):1-9. [CrossRef] [PubMed]

Mayi BS, Leibowitz JA, Woods AT, Ammon KA, Liu AE, Raja A. The role of Neuropilin-1 in COVID-19. PLoS Pathog 2021; 17(1):e1009153. [CrossRef] [PubMed]

Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci 2021; 46(10):848-60. [CrossRef] [PubMed]

Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021; 17(1):46-64. [CrossRef] [PubMed]

Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys 2019; 670:4-14. [CrossRef] [PubMed]

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020; 71(15):762-8. [CrossRef] [PubMed]

Rehman SU, Shafique L, Ihsan A, Liu Q. Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2. Pathogens 2020; 9: 240. [CrossRef] [PubMed]

Sameer AS, Nissar S. Toll-Like Receptors (TLRs): structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. Biomed Res Int 2021; 2021:1157023. [CrossRef] [PubMed]

Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 2020; 17; 182(6):1419-40.e23. [CrossRef] [PubMed]

Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell 2021; 184(7):1671-92. [CrossRef] [PubMed]

Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L. et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 2020; 182(6):1401-18.e18. [CrossRef] [PubMed]

Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, El Burai Felix S, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(24):759-65. [CrossRef] [PubMed]

Veljković M, Pavlović DR, Stojanović NM, Džopalić T, Popović Dragonjić L. Behavioral and dietary habits that could influence both COVID-19 and non-communicable civilization disease prevention-what have we learned up to now? Medicina (Kaunas) 2022; 58(11):1686. [CrossRef] [PubMed]

Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021; 595(7866):283-8. [CrossRef] [PubMed]

Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 2020; 9:e61312. [CrossRef] [PubMed]

Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 2020; 5(4):335-7. [CrossRef] [PubMed]

Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol 2021; 22(7):829-38. [CrossRef] [PubMed]

Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020; 18; 12(570): eabd3876. [CrossRef] [PubMed]

Published
2023/11/17
Section
Review article