

PREOPERATIVE ASSESSMENT FOR NON-SMALL-CELL LUNG CANCER SURGERY

*Miloš Stanković¹, Stefan Stevanović¹, Miloš Milojković¹, Bojan Ilić¹,
Aneta Jovanović¹, Milorad Pavlović^{1,2}, Iva Jovanović¹*

Lung cancer is the most common malignant tumor and globally the leading cause of death from malignant diseases in the general population, accounting for approximately 25% of all cancer deaths. According to current data, approximately 7,000 people are diagnosed with lung cancer in Serbia annually, and about 5,000 die from the disease. Treatment for lung cancer is complex and multidisciplinary, with surgery playing a central role in stages I to III-A. Despite numerous studies confirming that surgical resection offers the best chance of recovery, only 20–30% of patients are eligible for surgery at the time of diagnosis. There are many reasons for this, including advanced disease, comorbidities, weakened respiratory function, and poor performance status. Considering that surgical lung resections are often accompanied by peri- and postoperative complications, a detailed preoperative risk assessment is crucial for determining the outcome of treatment. The remainder of this text will outline the currently valid guidelines and protocols for preoperative risk assessment, with a particular focus on high-risk patients (elderly, smokers, chronic obstructive pulmonary disease—COPD—patients, and obese individuals). It will also delve into the role of spirometric-diffusion parameters and stress tests in this assessment.

Acta Medica Mediana 2025;64(3): 77–83.

Key words: lung cancer, surgery, spirometry, diffusion, stress tests

¹University Clinical Center Niš, Clinic of Thoracic Surgery, Niš, Serbia

²University of Niš, Faculty of Medicine, Niš, Serbia

Contact: Miloš Stanković
28/16 Generala Milojka Lešjanina St., 18000 Niš, Serbia
E-mail: drmisastankovic@gmail.com

I, II, and III-A may be candidates for surgical treatment (3). Radical surgical intervention offers the best chance of cure. This is supported by the fact that the median survival of NSCLC patients who were not surgically treated and were diagnosed with stage I disease was only 13 months or 25 months (if detected by screening versus symptomatic disease) (4). Unfortunately, at the time of diagnosis, as much as 70–80% of patients are not eligible for surgery, mainly due to advanced disease, comorbidities, and, consequently, poor general health. According to some authors, the percentage of patients with anatomically resectable NSCLC who are not suitable for surgical treatment solely due to poor respiratory function is as high as 37% (5–7). Moreover, 50–70% of NSCLC patients have COPD, arterial hypertension, diabetes mellitus, peripheral vascular disease, and/or other significant comorbidities, which can further complicate potential surgical treatment (8, 9).

Considering the above, it is clear that a properly conducted preoperative evaluation is central to preventing complications, which are otherwise relatively frequent following NSCLC resection (5, 10). Therefore, addressing this issue necessitates a team effort (involving thoracic surgeons, cardiologists, pulmonologists, and anesthesiologists) and an extremely responsible approach.

Introduction

Lung cancer is the most common malignant tumor and the leading cause of death from malignant diseases in men. In women, it is the third most common malignant tumor and the second most common cause of death (1). In Serbia, according to the data of the "Dr. Milan Jovanović Batut" Institute of Public Health, 6,863 people were diagnosed and 5,242 people died from lung cancer in 2019 (2).

Treatment for lung cancer can be surgical or conservative (chemotherapy, radiation therapy, targeted molecular therapy, and immunotherapy). Depending on their overall health status, non-small-cell lung cancer (NSCLC) patients with stage

Preoperative Assessment of Cardiorespiratory Function

The most common cardiorespiratory complications following NSCLC resection include: prolonged mechanical ventilation, reintubation, acute respiratory distress syndrome, pneumonia, atelectasis requiring bronchoscopy, pulmonary embolism, unstable angina pectoris, myocardial infarction, heart failure, and arrhythmias (11). According to Motono et al., the main predisposing factors associated with the development of the aforementioned conditions include male gender, age over 65 years, COPD, upper lobectomy, surgery duration > 2.5 h, lymphovascular invasion, and body mass index (BMI) of less than 21.68 (10). Petrella et al. came to similar conclusions, claiming that malnutrition (BMI < 18.5), obesity (BMI > 30), active smoking, obstructive sleep apnea, COPD, and asthma are the primary triggers for the development of postoperative complications (11).

The basic parameters to be considered when determining the functional operability of an NSCLC patient include age, general health condition, performance status, cardiorespiratory function, physical fitness, and extent of lung resection (8). The latter is significantly correlated with the rate of postoperative mortality, which, according to the results of Powell et al., reaches 2.3% after lobectomy and 7% after pneumonectomy (13).

Regarding the patient's age, today, most authors believe it is not a contraindication for surgical treatment of NSCLC (more than 30% of patients are over 70 years old) (6, 14). However, the risk of postoperative mortality increases with age, primarily due to comorbidities and impaired cardiorespiratory function. In patients over 70 years of age, it reaches 7% after lobectomy and 14% after pneumonectomy (14). Despite this, current recommendations are that elderly patients should be evaluated using the same algorithms as younger people (14).

European Respiratory Society (ERS) and European Society of Thoracic Surgeons (ESTS) experts recommend that all candidates for NSCLC resection should undergo spirometry and diffusing capacity for carbon monoxide (DLco) measurement (14, 15). Forced expiratory volume in 1 s (FEV₁), as the most critical spirometric parameter, provides insight into the state of pulmonary ventilation, while DLco indicates the integrity and function of the alveolar-capillary membrane (16). Following tumor resection, and due to the loss of the surrounding healthy lung parenchyma, the values of both parameters decrease, with the decrease being proportional to the extent of the resection itself. Numerous researchers have addressed this issue. Table 1 shows the average (%) postoperative values of FEV₁ and DLco expressed relative to the preoperative values obtained by some of the authors in their studies (17–19).

Table 1. Average postoperative (%) values of FEV₁ and DLco compared to preoperative values (17–19)

		Lobectomy			
		After one month	After 3 months	After 6 months	After 12 months
FEV ₁	71.4%	75.6%	84.3%	84.2%	
DLco	64.5%	70.1%	91.3%	96.5%	
		Pneumonectomy			
		After one month	After 3 months	After 6 months	After 12 months
FEV ₁	48.1%	50.7%	65%	75%	
DLco	50.6%	55.9%	80%	85%	

The table shows that the most significant recovery of respiratory function occurs in the period 3 to 6 months post-surgery, while the recovery is insignificant later.

ERS and ESTS experts believe that patients with FEV₁ and DLco $\geq 80\%$ can safely undergo surgical resection up to pneumonectomy, without the need for additional analyses (15). Candidates with FEV₁ > 1.5 L can undergo lobectomy, while segmentectomy or wedge resection may be

considered if FEV₁ is > 0.6 L (15, 20). Otherwise, patients should not be lightly excluded from consideration for surgical treatment, but should instead be further investigated. In such circumstances, it is suggested that stress tests (described below) be performed to determine maximal oxygen consumption (VO₂max). A VO₂max > 20 mL/kg/min indicates that resection up to pneumonectomy can be safely performed. In contrast, a VO₂max < 10 mL/kg/min suggests

that surgical treatment should be abandoned due to the high risk of postoperative complications and death (15). Patients with a reduced aerobic capacity ($VO_2\text{max}$ between 10 and 20 mL/kg/min) fall into a potentially operable category. In these cases, alternative treatment methods such as wedge resection, stereotactic radiotherapy, or radiofrequency ablation should be considered in addition to radical surgical resection (21, 22).

If one still opts for radical surgical intervention, it must be kept in mind that reduced aerobic capacity indicates impaired cardiopulmonary function. Accordingly, the scope of potential resection should be adjusted to the predicted postoperative pulmonary reserve, i.e., predicted postoperative value (ppo) FEV_1 and $ppoDLco$. The two formulas most commonly used to calculate these values are as follows (14):

1) $ppoFEV_1 = \text{preoperative } FEV_1 \times (1 - \text{fraction of total perfusion for the resected lung})$

2) $ppoFEV_1 = \text{preoperative } FEV_1 \times (19 \text{ segments} - \text{the number of segments to be removed} - \text{the number of non-functional segments}) / 19 - \text{the number of non-functional segments}$

The term non-functional segment refers to those bronchovascular segments with no adequate gas exchange taking place due to broncho-obstruction, atelectasis, emphysema, etc. The expert consensus is that the first formula should be used when planning a pneumonectomy (the perfusion fraction of the right and left lung is normally 55% and 45%, respectively), and the second formula should be applied when planning a lobectomy or segmentectomy (8, 14). If both parameters are $> 30\%$, resection up to lobectomy can be performed. If one of the parameters is $< 30\%$, $ppoVO_2\text{max}$ should also be calculated. A $ppoVO_2\text{max} > 10 \text{ mL/kg/min}$ is sufficient for resection up to lobectomy. Otherwise, due to the high risk of peri- and postoperative mortality, surgery is contraindicated, and preference should be given to another option (21, 22). High postoperative mortality (29% and 100%) in patients with $ppoVO_2\text{max} < 10 \text{ mL/kg/min}$ was confirmed by the results of two studies independently conducted by Bechard et al. and Bolliger et al. (23, 24). As far as $ppoFEV_1$ is concerned, if its value is $< 30\%$, the percentage of postoperative complications reaches as much as 41% (19).

There has been a debate among authors concerning the $VO_2\text{max}$ value that would rule out the risk of postoperative complications. Most agree that a $VO_2\text{max} > 20 \text{ mL/kg/min}$ (23, 25, 26) is sufficient for pneumonectomy, and a $VO_2\text{max} > 15 \text{ mL/kg/min}$ for lobectomy (25, 27, 28). A $VO_2\text{max}$ of 10 mL/kg/min is often considered the safe lower limit of resection. However, some argue that a $VO_2\text{max} < 15 \text{ mL/kg/min}$ already indicates functional inoperability (23, 29).

Stress Tests

Stress tests are diagnostic procedures used to assess the function of the cardiorespiratory

system during exertion. They are designed to assess the body's maximum oxygen intake and consumption capacity during intense exercise. The most important parameters measured in these tests include: heart rate, stroke volume and cardiac output, pulmonary ventilation, $VO_2\text{max}$, and saturation of peripheral oxygen (SpO_2) (30).

The most common stress tests include the bicycle and treadmill stress tests (30). Regarding the latter, in addition to treadmill grade, the speed of ascent also shows a linear correlation with $VO_2\text{max}$. A speed of ascent of 15 m/min approximates $VO_2\text{max} = 20 \text{ mL/kg/min}$ (sufficient for pneumonectomy), and a speed of 12 m/min approximates $VO_2\text{max} = 15 \text{ mL/kg/min}$ (sufficient for lobectomy) (8, 31, 32).

In the absence of demanding and expensive tests, we can perform the 6-minute walk test (6-MWT), stair climbing test, or shuttle walk test. Although ERS and ESTS experts do not recommend the 6-MWT in the routine evaluation of NSCLC operability, Pierce et al. claim it is the best predictor of postoperative respiratory failure (33). At the same time, Holden et al. believe that completing $> 1,000$ steps indicates a low risk of postoperative complications and mortality (34).

The stair climbing test can be used as a first-line evaluation of candidates for surgical resection of NSCLC, to detect the patients who require more precise evaluation using more sophisticated methods (15, 35). Patients who can climb five floors without pausing (equivalent to $FEV_1 > 2 \text{ L}$ or $VO_2\text{max} > 20 \text{ mL/kg/min}$) can undergo pneumonectomy safely, while patients who climb three floors (equivalent to $FEV_1 > 1.7 \text{ L}$) can undergo lobectomy (32, 36, 37). Specifically, a 22 m ascent is the limit for safe pneumonectomy, while a 14 m ascent is the limit for safe lobectomy (35). The patient's climbing pace should also be considered. Bernasconi et al. argue that a speed of ascent $> 15 \text{ m/min}$ indicates safe resection of NSCLC up to pneumonectomy. Otherwise, physicians should not rush to decide to perform surgical treatment but should instead evaluate $VO_2\text{max}$ using more precise tests (38).

When performing the shuttle walk test, the subject walks along a ten-meter-long path in two directions, gradually speeding up (usually 12 minutes) (39). Tsubochi et al. report that $> 400 \text{ m}$ traveling indicates a low risk of postoperative complications and death (5). Although the shuttle walk test is the least used for diagnostic purposes, its application is significant in the period of postoperative rehabilitation of patients.

Gas Analyses and Saturation

The gas analysis involves measuring O_2 and CO_2 concentrations in arterial blood to assess respiratory function, metabolism, and acid-base balance.

SpO_2 measures the percentage of hemoglobin in arterial blood that is bound to O_2 molecules. It is measured using the non-invasive pulse oximetry procedure.

According to some authors, hypoxemia (partial pressure of oxygen < 60 mmHg), hypercapnia (partial pressure of carbon dioxide > 45 mmHg), and $\text{SpO}_2 < 90\%$ (or desaturation $> 4\%$ during the stress test) are relative contraindications for NSCLC surgery (20, 40, 41).

American College of Chest Physicians (ACCP) Guidelines

According to the current 2013 ACCP guidelines, the two key assessment parameters for postoperative risk following surgical resection of NSCLC are ppoFEV1 and ppoDLco . If the values of both parameters are $> 60\%$, the postoperative risk is low. If at least one of them is between 30–60%, ACCP experts suggest performing one of the two tests listed above—the stair climbing test or the shuttle walk test—to grasp the risks involved more comprehensively. If the patient achieves a result > 22 m in the first test or > 400 m in the second, they are considered a suitable candidate for lung resection up to pneumonectomy.

Cardiorespiratory function and $\text{VO}_{2\text{max}}$ should be assessed using more sophisticated tests if either or both are $< 30\%$. In that case, and based on the obtained results, the categories of low-risk and high-risk patients include those with $\text{ppoVO}_{2\text{max}} > 20$ mL/kg/min and $\text{ppoVO}_{2\text{max}} < 10$ mL/kg/min, respectively (42).

Conclusion

Given that surgical resections of NSCLC are among the most complex procedures (technically challenging, accompanied by numerous comorbidities and relatively frequent peri- and postoperative complications), a detailed preoperative risk assessment is crucial for the treatment outcome and disease prognosis. For this reason, spirometry, lung diffusion, and stress tests in high-risk patients are now considered standard and imperative.

References

1. Mao Y, Yang D, He J, Krasna MJ. Epidemiology of lung cancer. *Surg Oncol Clin N Am* 2016; 25(3): 439-45. [\[CrossRef\]](#) [\[PubMed\]](#)
2. Cavic M, Kovacevic T, Zaric B, Stojiljkovic D, Korda NJ, Rancic M, et al. Lung cancer in Serbia. *J Thorac Oncol* 2022; 17(7): 867-72. [\[CrossRef\]](#) [\[PubMed\]](#)
3. Alduais Y, Zhang H, Fan F, Chen J, Chen B. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. *Medicine (Baltimore)* 2023; 102(8): e32899. [\[CrossRef\]](#) [\[PubMed\]](#)
4. Sobue T, Suzuki T, Matsuda M, Kuroishi T, Ikeda S, Naruke T. Survival for clinical stage I lung cancer not surgically treated. Comparison between screen-detected and symptom-detected cases. The Japanese Lung Cancer Screening Research Group. *Cancer* 1992; 69(3): 685-92. [\[CrossRef\]](#) [\[PubMed\]](#)
5. Tsubochi H, Shibano T, Endo S. Recommendations for perioperative management of lung cancer patients with comorbidities. *Gen Thorac Cardiovasc Surg* 2018; 66(2): 71-80. [\[CrossRef\]](#) [\[PubMed\]](#)
6. Mazzone PJ. Preoperative evaluation of the lung cancer resection candidate. *Expert Rev Respir Med* 2010; 4(1): 97-113. [\[CrossRef\]](#) [\[PubMed\]](#)
7. Baser S, Shannon VR, Eapen GA, Jimenez CA, Onn A, Keus L, et al. Pulmonary dysfunction as a major cause of inoperability among patients with non-small-cell lung cancer. *Clin Lung Cancer* 2006; 7(5): 344-9. [\[CrossRef\]](#) [\[PubMed\]](#)
8. von Groote-Bidlingmaier F, Koegelenberg CF, Bolliger CT. Functional evaluation before lung resection. *Clin Chest Med* 2011; 32(4): 773-82. [\[CrossRef\]](#) [\[PubMed\]](#)
9. Pluchart H, Chanoine S, Moro-Sibilot D, Chouaid C, Frey G, Villa J, et al. Lung cancer, comorbidities, and medication: the infernal trio. *Front Pharmacol* 2024; 14: 1016976. [\[CrossRef\]](#) [\[PubMed\]](#)
10. Motono N, Mizoguchi T, Ishikawa M, Iwai S, Iijima Y, Uramoto H. Analysis of risk factors of postoperative complication for non-small cell lung cancer. *BMC Pulm Med* 2024; 24(1): 333. [\[CrossRef\]](#) [\[PubMed\]](#)
11. Petrella F, Cara A, Cassina EM, Faverio P, Franco G, Libretti L, et al. Evaluation of preoperative cardiopulmonary reserve and surgical risk of patients undergoing lung cancer resection. *Ther Adv Respir Dis* 2024; 18: 17534666241292488. [\[CrossRef\]](#) [\[PubMed\]](#)
12. Kallianos A, Rapti A, Tsimpoukis S, Charpidou A, Danno I, Kainis E, et al. Cardiopulmonary exercise testing (CPET) as preoperative test before lung resection. *In Vivo* 2014; 28(6): 1013-20. [\[PubMed\]](#)
13. Powell HA, Tata LJ, Baldwin DR, Stanley RA, Khakwani A, Hubbard RB. Early mortality after surgical resection for lung cancer: an analysis of the English National Lung cancer audit. *Thorax* 2013; 68(9): 826-34. [\[CrossRef\]](#) [\[PubMed\]](#)
14. Spyridatos D, Zarogoulidis P, Porpodis K, Angelis N, Papaiwannou A, Kioumis I, et al. Preoperative evaluation for lung cancer resection. *J Thorac Dis* 2014; 6(Suppl 1): S162-6. [\[CrossRef\]](#) [\[PubMed\]](#)
15. Brunelli A, Charloux A, Bolliger CT, Rocco G, Sculier JP, Varela G, et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemoradiotherapy). *Eur Respir J* 2009; 34(1): 17-41. [\[CrossRef\]](#) [\[PubMed\]](#)
16. Brunelli A, Refai MA, Salati M, Sabbatini A, Morgan-Hughes NJ, Rocco G. Carbon monoxide lung diffusion capacity improves risk stratification in patients without airflow limitation: evidence for systematic measurement before lung resection. *Eur J Cardiothorac Surg* 2006; 29(4): 567-70. [\[CrossRef\]](#) [\[PubMed\]](#)
17. Brunelli A, Refai M, Salati M, Xiumé F, Sabbatini A. Predicted versus observed FEV1 and DLCO after major lung resection: a prospective evaluation at different postoperative periods. *Ann Thorac Surg* 2007; 83(3): 1134-9. [\[CrossRef\]](#) [\[PubMed\]](#)
18. Kim HK, Lee YJ, Han KN, Choi YH. Pulmonary function changes over 1 year after lobectomy in lung cancer. *Respir Care* 2016; 61(3): 376-82. [\[CrossRef\]](#) [\[PubMed\]](#)
19. Patino DA, Ferguson M. Pulmonary physiologic assessment of operative risk. In: LoCicero J. Shields' General Thoracic Surgery. 8th ed. Lippincott Williams & Wilkins; 2018. p339-53.
20. Bolliger CT, Perruchoud AP. Functional evaluation of the lung resection candidate. *Eur Respir J* 1998; 11(1): 198-212. [\[CrossRef\]](#) [\[PubMed\]](#)
21. Bolliger CT, Jordan P, Solèr M, Stulz P, Grädel E, Skarvan K, et al. Exercise capacity as a predictor of postoperative complications in lung resection candidates. *Am J Respir Crit Care Med* 1995; 151(5): 1472-80. [\[CrossRef\]](#) [\[PubMed\]](#)
22. Win T, Jackson A, Sharples L, Groves AM, Wells FC, Ritchie AJ, et al. Cardiopulmonary exercise tests and lung cancer surgical outcome. *Chest* 2005; 127(4): 1159-65. [\[CrossRef\]](#) [\[PubMed\]](#)
23. Bechard D, Wetstein L. Assessment of exercise oxygen consumption as preoperative criterion for lung resection. *Ann Thorac Surg* 1987; 44(4): 344-9. [\[CrossRef\]](#) [\[PubMed\]](#)
24. Bolliger CT, Wyser C, Roser H, Solèr M, Perruchoud AP. Lung scanning and exercise testing for the prediction of postoperative performance in lung resection candidates at increased risk for complications. *Chest* 1995; 108(2): 341-8. [\[CrossRef\]](#) [\[PubMed\]](#)
25. Smith TP, Kinawelt GT, Tucker WY, Spillers WP, George RB. Exercise capacity as a predictor of post-thoracotomy morbidity. *Am Rev Respir Dis* 1984; 129(5): 730-4. [\[CrossRef\]](#) [\[PubMed\]](#)
26. Datta D, Lahiri B. Preoperative evaluation of patients undergoing lung resection surgery. *Chest* 2003; 123(6): 2096-103. [\[CrossRef\]](#) [\[PubMed\]](#)
27. Morice RC, Peters EJ, Ryan MB, Putnam JB, Ali MK, Roth JA. Exercise testing in the evaluation of patients at high risk for complications from lung resection. *Chest* 1992; 101(2): 356-61. [\[CrossRef\]](#) [\[PubMed\]](#)

28. Wang JS, Abboud RT, Evans KG, Finley RJ, Graham BL. Role of CO diffusing capacity during exercise in the preoperative evaluation for lung resection. *Am J Respir Crit Care Med* 2000; 162(4 Pt 1): 1435-44. [\[CrossRef\]](#) [\[PubMed\]](#)

29. Markos J, Mullan BP, Hillman DR, Musk AW, Antico VF, Lovegrove FT, et al. Preoperative assessment as a predictor of mortality and morbidity after lung resection. *Am Rev Respir Dis* 1989; 139(4): 902-10. [\[CrossRef\]](#) [\[PubMed\]](#)

30. Watanabe T, Tohyama T, Ikeda M, Fujino T, Hashimoto T, Matsushima S, et al. Development of deep-learning models for real-time anaerobic threshold and peak VO₂ prediction during cardiopulmonary exercise testing. *Eur J Prev Cardiol* 2024; 31(4): 448-57. [\[CrossRef\]](#) [\[PubMed\]](#)

31. Koegelenberg CF, Diacon AH, Irani S, Bolliger CT. Stair climbing in the functional assessment of lung resection candidates. *Respiration* 2008; 75(4): 374-9. [\[CrossRef\]](#) [\[PubMed\]](#)

32. Olsen GN, Bolton JW, Weiman DS, Hornung CA. Stair climbing as an exercise test to predict the postoperative complications of lung resection. Two years' experience. *Chest* 1991; 99(3): 587-90. [\[CrossRef\]](#) [\[PubMed\]](#)

33. Pierce RJ, Copland JM, Sharpe K, Barter CE. Preoperative risk evaluation for lung cancer resection: predicted postoperative product as a predictor of surgical mortality. *Am J Respir Crit Care Med* 1994; 150(4): 947-55. [\[CrossRef\]](#) [\[PubMed\]](#)

34. Holden DA, Rice TW, Stelmach K, Meeker DP. Exercise testing, 6-min walk, and stair climb in the evaluation of patients at high risk for pulmonary resection. *Chest* 1992; 102(6): 1774-9. [\[CrossRef\]](#) [\[PubMed\]](#)

35. Garcia-Rio F. The stair-climbing test. The quest for much-needed simplicity. *Arch Bronconeumol* 2015; 51(6): 259-60. [\[CrossRef\]](#) [\[PubMed\]](#)

36. Bolton JW, Weiman DS, Haynes JL, Hornung CA, Olsen GN, Almond CH. Stair climbing as an indicator of pulmonary function. *Chest* 1987; 92(5): 783-8. [\[CrossRef\]](#) [\[PubMed\]](#)

37. Pollock M, Roa J, Benditt J, Celli B. Estimation of ventilatory reserve by stair climbing. A study in patients with chronic airflow obstruction. *Chest* 1993; 104(5): 1378-83. [\[CrossRef\]](#) [\[PubMed\]](#)

38. Bernasconi M, Koegelenberg CF, von Groote-Bidlingmaier F, Maree D, Barnard BJ, Diacon AH, et al. Speed of ascent during stair climbing identifies operable lung resection candidates. *Respiration* 2012; 84(2): 117-22. [\[CrossRef\]](#) [\[PubMed\]](#)

39. Parreira VF, Janaudis-Ferreira T, Evans RA, Mathur S, Goldstein RS, Brooks D. Measurement properties of the incremental shuttle walk test. a systematic review. *Chest* 2014; 145(6): 1357-69. [\[CrossRef\]](#) [\[PubMed\]](#)

40. Cottrell JJ, Ferson PF. Preoperative assessment of the thoracic surgical patient. *Clin Chest Med* 1992; 13(1): 47-53. [\[CrossRef\]](#) [\[PubMed\]](#)

41. Ninan M, Sommers KE, Landreneau RJ, Weyant RJ, Tobias J, Luketich JD, et al. Standardized exercise oximetry predicts postpneumonectomy outcome. *Ann Thorac Surg* 1997; 64(2): 328-32; [\[CrossRef\]](#) [\[PubMed\]](#)

42. Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest* 2013; 143(5 Suppl):e166S-e190S. [\[CrossRef\]](#) [\[PubMed\]](#)

PREOPERATIVNA PROCENA KANDIDATA ZA HIRURŠKO LEČENJE NEMIKROCELULARNOG KARCINOMA PLUĆA

Miloš Stanković¹, Stefan Stevanović¹, Miloš Milojković¹, Bojan Ilić¹, Aneta Jovanović¹, Milorad Pavlović^{1,2}, Iva Jovanović¹

¹Univerzitetski klinički centar Niš, Klinika za grudnu hirurgiju, Niš, Srbija

²Univerzitet u Nišu, Medicinski fakultet, Niš, Srbija

Kontakt: Miloš Stanković
Generala Milojka Lešjanina 28/16, 18000 Niš, Srbija
E-mail: drmisastankovic@gmail.com

Karcinom pluća je najčešći maligni tumor i vodeći uzrok smrti od malignih bolesti u opštoj populaciji, sa udelom od otprilike 25%. Prema aktuelnim podacima, od ove bolesti u Srbiji na godišnjem nivou oboli skoro sedam hiljada ljudi, a umre oko pet hiljada. Lečenje je kompleksno i multidisciplinarno. Hirurgija ima centralnu ulogu u lečenju tumora od I do III-A stadijuma. Mada su brojne studije potvrdile da hirurška resekcija tumora pruža najveće šanse za izlečenje bolesnika, u vreme postavljanja dijagnoze može se operisati samo između 20% i 30% bolesnika. Razlozi za to su brojni, a kao najčešći se izdvajaju odmakla bolest, komorbiditeti, oslabljena disajna funkcija i loše opšte funkcionalno stanje. S obzirom na to da su hirurške resekcije pluća relativno često praćene perioperativnim i postoperativnim komplikacijama, treba istaći da je detaljna preoperativna procena rizika izuzetno važna za ishod lečenja. U radu su predstavljene trenutno važeće smernice i protokoli za preoperativnu procenu rizika, sa posebnim osvrtom na bolesnike kod kojih postoji povišen rizik od razvoja ove bolesti (stare osobe, pušači, osobe sa hroničnom opstruktivnom bolesti pluća i gojazne osobe) i na ulogu spirometrijsko-difuzijskih parametara i testova opterećenja.

Acta Medica Mediana 2025; 64(3): 77-83.

Ključne reči: karcinom pluća, hirurško lečenje, spirometrija, difuzija, testovi opterećenja

"This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) Licence".